Few-Body Systems

, Volume 54, Issue 11, pp 2073–2080

Pseudospin Symmetry in Position-Dependent Mass Dirac-Coulomb Problem by Using Laplace Transform and Convolution Integral

Article

Abstract

The exact pseudospin symmetry solutions of Dirac equation with position-dependent mass (PDM) Coulomb potential in the presence of Colulomb-like tensor potential are obtained by using Laplace transform (LT) approach. The energy eigenvalue equation of the Dirac particles is found and some numerical results are given. By using Laplace convolution integral, the corresponding radial wave functions are presented in terms of confluent hypergeometric functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hecht K.T., Adler A.: Generalized seniority for favored J ≠ 0 pairs in mixed configurations. Nucl. Phys. A 137, 129 (1969)Google Scholar
  2. 2.
    Wong M.K.F., Yeh H.Y.: Simplified solution of the Dirac equation with a Coulomb potential. Phys. Rev. D 25, 3396 (1982)MathSciNetGoogle Scholar
  3. 3.
    Dong S.H.: The Dirac equation with a Coulomb potential in D dimensions. J. Phys. A Math. Gen. 36, 4977 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Alhaidari A.D.: Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 72 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Hamzavi M., Rajabi A.A., Hassanabadi H.: Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys. Lett. A 374, 4303 (2010)MathSciNetMATHGoogle Scholar
  6. 6.
    Ikhdair S.M., Sever R.: Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential. App. Math. Comp. 216, 545 (2010)MathSciNetMATHGoogle Scholar
  7. 7.
    Lisboa R., Malheiro M., De Castro A.S., Alberto P., Fiolhais M.: Pseudospin symmetry and the relativistic harmonic oscillator. Phys. Rev. C 69, 024319 (2004)Google Scholar
  8. 8.
    Ginocchio J.N.: U(3) and Pseudo-U(3) symmetry of the relativistic harmonic oscillator. Phys. Rev. Lett. 95, 252501 (2005)Google Scholar
  9. 9.
    Gou J.Y., Fang X.Z., Xu F.X.: Pseudospin symmetry in the relativistic harmonic oscillator. Nucl. Phys. A 757, 411 (2005)Google Scholar
  10. 10.
    Alhaidari A.D., Bahlouli H., Al-Hasan A.: Dirac and Klein-Gordon equations with equal scalar and vector potentials. Phys. Lett. A 349, 87 (2006)MathSciNetMATHGoogle Scholar
  11. 11.
    Alberto P., De Castro A.S., Malheiro M.: Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and spin-0 particles. Phys. Rev. C 75, 047303 (2007)Google Scholar
  12. 12.
    Qiang W.C., Zhou R.S., Gao Y.: Application of the exact quantization rule to the relativistic soultion of the rotational Morse potential with pseudospin symmetry. J. Phys. A: Math. Theor. 40, 1677 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Bayrak O., Boztosun I.: The pseudospin symmetric solution of the Morse potential for any κ state. J. Phys. A: Math. Theor. 40, (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Berkdemir C.: Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term. Nucl. Phys. A 770, (2006)Google Scholar
  15. 15.
    Soylu A., Bayrak O., Boztosun I.: An approximate solution of Dirac-Hulthén problem with pseudospin and spin symmetry for any κ state. J. Math. Phys. 48, (2007)MathSciNetGoogle Scholar
  16. 16.
    Soylu A., Bayrak O., Boztosun I.: κ state solutions of the Dirac equation for the Eckart potential with pseudospin and spin symmetry. J. Phys. A: Math. Theor. 41, 065308 (2008)MathSciNetGoogle Scholar
  17. 17.
    Zhang L.H., Li X.P., Jia C.S.: Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin–orbit coupling term. Phys. Lett. A 372, 2201 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Liu X.Y., Wei G.F., Long C.Y.: Arbitrary wave relativistic bound state solutions for the Eckart potential. Int. J. Theor. Phys. 48, (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Ikot A.N.: Solutions of Dirac equation for generalized hyperbolical potential including Coulomb-Like tensor potential with spin symmetry. Few-Body Syst. 53, 549 (2012)Google Scholar
  20. 20.
    Jia C.S., Liu J.Y., Wang P.Q., Lin X.: Approximate analytical solutions of the Dirac equation with the hyperbolic potential in the presence of the spin symmetry and pseudo-spin symmetry. Int. J. Theor. Phys. 48, 2633 (2009)MATHGoogle Scholar
  21. 21.
    Eshghi M., Mehraban H.: Eigen spectra for q-Deformed hyperbolic scarf potential including a cooulomb-like tensor interaction. J. Sci. Res. 3(2), 239 (2011)Google Scholar
  22. 22.
    Bastard, G.: Wave mechanics applied to semiconductor heterostructure, Les Editin de Physique, Les Ulis (1988)Google Scholar
  23. 23.
    Arias, F., et al.: Effective mass of one 4He atom in liquid 3He. Phys. Rev. B 50, 4248 (1997)Google Scholar
  24. 24.
    Weisbuch C., Vinter B.: Quantum semiconductor heterostructure. Academic Press, New York (1993)Google Scholar
  25. 25.
    Serra L., Lipparini E.: Spin response of unpolarized quantum dots. Europhys. Lett. 40, 667 (1997)Google Scholar
  26. 26.
    Koç R., Koca M.: A systematic study on the exact solution of the position dependent mass Schrödinger equation. J. Phys. A: Math. Gen. 36, 8105 (2003)MATHGoogle Scholar
  27. 27.
    Jia C.S.,de Souza Dutra A.: Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys. 323, 566 (2008)MATHGoogle Scholar
  28. 28.
    Jia C.S. et al.: Relativistic confinement of neutral fermions with partially exactly solvable and exactly solvable PT-symmetric potentials in the presence of position-dependent mass. Int. J. Theor. Phys. 47, 2513 (2008)MATHGoogle Scholar
  29. 29.
    Xu Y., He S., Jia C.S.: Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including the spin–orbit coupling term. J. Phys. A Math. Theor. 41, 255302 (2008)MathSciNetGoogle Scholar
  30. 30.
    Dekar L. et al.: An exactly soluble Schrödinger equation with smooth position-dependent mass. J. Math. Phys. 39, 2551 (1998)MathSciNetMATHGoogle Scholar
  31. 31.
    Sever R., Tezcan C.: Exact solutions of Schrödinger equation for the modified Kratzer’s molecular potential with position-dependent mass. Int. J. Mod. Phys. E 17, 1327 (2008)Google Scholar
  32. 32.
    Ikhdair S.M., Sever R.: Exact solutions of the modified Kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by Nikiforov-Uvarov method. Int. J. Mod. Phys. C 20(3), 361 (2009)MathSciNetMATHGoogle Scholar
  33. 33.
    Ikhdair S.M., Sever R.: Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein–Gordon equation for the scalar and vector Hulthén potentials. Phys. Scripta 79, 035002 (2009)Google Scholar
  34. 34.
    Ikhdair S.M., Sever R.: Improved analytical approximation to arbitrary l-state solutions of the Schrödinger equation for the hyperbolical potential. Ann. Phys. 18, 189 (2009)MathSciNetMATHGoogle Scholar
  35. 35.
    Schiff J.L.: The Laplace Transform: Theory and Applications. Springer, New York (1999)MATHGoogle Scholar
  36. 36.
    Chen G.: The recursion relations for the N-dimensional harmonic oscillator. Phys. Lett. A 328, 123 (2004)MATHGoogle Scholar
  37. 37.
    Chen G.: The recurrence relations of the radial wave functions for the two-dimensional Coulomb potential. Phys. Scr. 71, 233 (2005)MATHGoogle Scholar
  38. 38.
    Ran Y., Xue L., Hu S., Su R.K.: On the Coulomb-type potential of the one-dimensional Schrödinger equation. J. Phys. A: Math. Gen. 33, 9265 (2000)MathSciNetMATHGoogle Scholar
  39. 39.
    Chen G.: The exact solutions of the Schrödinger equation with the Morse potential via Laplace transforms. Phys. Lett. A 326, 55 (2004)MATHGoogle Scholar
  40. 40.
    Ortakaya S.: Exact solutions of Klein-Gordon equation with ring-shaped oscillator by using Laplace integral transform. Chin. Phys. B 21, 070303 (2012)Google Scholar
  41. 41.
    DeGrande-De Kimpe N., Khrennikov A.Y.: The non-Archimedian Laplace transform. Bull. Belg. Math. Soc. 3, 225 (1996)MathSciNetGoogle Scholar
  42. 42.
    Arda A., Sever R.: Exact spin and pseudo-spin symmetries of the Dirac-Kratzer problem with a tensor potential via Laplace transform approach. Mod. Phys. Lett. A 27, 1250171 (2012)Google Scholar
  43. 43.
    Eshghi, M., Hamzavi, M., Ikhdair, S.M.: Exact solutions of a spatially dependent mass Dirac equation for Coulomb field plus tensor interaction via laplace transformation method. Adv. High. En. Phys. (2012). doi:10.1155/2012/873619
  44. 44.
    Greiner W.: Relativistic quantum mechanics. Springer-Verlag, New York (1981)Google Scholar
  45. 45.
    DeSouza Dutra A., Hott M.: Dirac equation exact solutions for generalized asymmetrical Hartmann potentials. Phys. Lett. A 356, 215 (2006)MathSciNetGoogle Scholar
  46. 46.
    Berkdemir C., Cheng Y.F.: On the exact solutions of the Dirac equation with a novel angle-dependent potential. Phys. Scr. 79, 035003 (2009)Google Scholar
  47. 47.
    Ikhdair S.M., Sever R.: Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. J. Math. Chem. 45(4), 1137 (2009)MathSciNetMATHGoogle Scholar
  48. 48.
    Gradshteyn I.S., Ryzhik I.M.: Table of integrals, series, and products. Academic Press, San Diego (2007)MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of Natural and Applied SciencesErciyes UniversityKayseriTurkiye

Personalised recommendations