Advertisement

Few-Body Systems

, Volume 54, Issue 7–10, pp 1119–1122 | Cite as

Production Reaction of \({{\bf \bar{K}}{NN}-{\bf \pi}{YN}}\) Resonance from Faddeev Equations

  • Shota Ohnishi
  • Yoichi Ikeda
  • Hiroyuki Kamano
  • Toru Sato
Article
  • 70 Downloads

Abstract

As a first step toward clarifying whether the strange dibaryon resonances in the \({\bar{K}NN-\pi YN}\) system can emerge with a physical significance in the nuclear-reaction observables, we compute the break-up probability of \({Y_K + N \to \pi +\Sigma + N}\) at real scattering energies by solving \({\bar{K}NN-\pi YN}\) coupled-channel Alt–Grassberger–Sandhas equations. We examine how the signature of the dibaryon resonance shows up in the probability, and also discuss the possibility for a use of strange dibaryon production reactions to distinguish two-body-interaction models with Λ(1405).

Keywords

Faddeev Equation Quasibound State Ative Momentum Faddeev Calculation Initial State Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamazaki T., Akaishi Y.: \({(K^-, \pi^-)}\) production of nuclear \({\bar{K}}\) bound states in proton-rich systems via Λ* doorways. Phys. Lett. B. 535, 70 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Yamazaki T., Akaishi Y.: The basic \({\bar{K}}\) nuclear cluster \({K^- pp}\) and its enhanced formation in the \({p + p \rightarrow K^+ + X}\) reaction. Phys. Rev. C. 76, 045201 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Dote A. et al.: \({K^- pp}\) system with chiral SU(3) effective interaction. Nucl. Phys. A. 804, 197 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Dote A. et al.: Variational calculation of the \({ppK^-}\) system based on chiral SU(3) dynamics. Phys. Rev. C. 79, 014003 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Wycech S., Green A.M.: Variational calculations for K-few-nucleon systems. Phys. Rev. C. 79, 014001 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Barnea N. et al.: Realistic calculations of \({\bar{K} N N}\), \({\bar{K} N N N}\), and \({\bar{K} \bar{K} N N}\) quasibound states. Phys. Lett. B. 712, 132 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Shevchenko N.V. et al.: Faddeev calculation of a \({K^- p p}\) quasi-bound state. Phys. Rev. Lett. 98, 082301 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Shevchenko N.V. et al.: \({\bar{K}NN}\) quasi-bound state and the \({\bar{K}N}\) interaction: Coupled-channel Faddeev calculations of the \({\bar{K}NN{-} \pi\Sigma N}\) system. Phys. Rev. C. 76, 044004 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Ikeda Y., Sato T.: Strange dibaryon resonance in the \({\bar{K}NN-\pi \Sigma N}\) system. Phys. Rev. C. 76, 035203 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Ikeda Y., Sato T.: On the resonance energy of the \({\bar{K}NN-\pi YN}\) system. Phys. Rev. C. 79, 035201 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Ikeda Y. et al.: Energy dependence of \({\bar{K}N}\) interactions and resonance pole of strange dibaryons. Prog. Theor. Phys. 124, 533 (2010)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Hyodo T., Weise W.: Effective \({\bar{K}N}\) interaction based on chiral SU(3) dynamics. Phys. Rev. C. 77, 035204 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Koike T., Harada T.: Deeply-bound \({K^- pp}\) state in the 3He(in-flight \({K^-}\), n) spectrum and its moving pole near the \({\pi \Sigma N}\) threshold. Phys. Rev. C. 80, 055208 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Yamagata-Sekihara J. et al.: Formation spectra of light kaonic nuclei by in-flight (\({\bar{K}, N}\)) reactions with chiral unitary amplitude. Phys. Rev. C. 80, 045204 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Alt E.O. et al.: Reduction of the three-particle collision problem to multichannel two-particle Lippmann-Schwinger equations. Nucl. Phys. B. 2, 167 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Amado R.D.: Soluble Problems in the Scattering from Compound Systems. Phys. Rev. 132, 485 (1963)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Oset E., Ramos A.: Nonperturbative chiral approach to s wave \({\bar{K}N}\) interactions. Nucl. Phys. A. 635, 99 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Jido D. et al.: Chiral dynamics of the two Λ(1405) states. Nucl. Phys. A. 725, 181 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Shota Ohnishi
    • 1
    • 2
  • Yoichi Ikeda
    • 2
  • Hiroyuki Kamano
    • 3
  • Toru Sato
    • 4
    • 5
  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  2. 2.RIKEN Nishina CenterWakoJapan
  3. 3.Research Center for Nuclear PhysicsOsaka UniversityOsakaJapan
  4. 4.Department of PhysicsOsaka UniversityOsakaJapan
  5. 5.J-PARC Branch, KEK Theory CenterInstitute of Particle and Nuclear StudiesTokaiJapan

Personalised recommendations