Few-Body Systems

, Volume 54, Issue 7–10, pp 1523–1527 | Cite as

The Universality of the Efimov Three-body Parameter

  • J. P. D’Incao
  • J. Wang
  • B. D. Esry
  • C. H. Greene


In this paper we discuss the recent discovery of the universality of the three-body parameter (3BP) from Efimov physics. This new result was identified by recent experimental observations in ultracold quantum gases where the value of the s-wave scattering length, a = a , at which the first Efimov resonance is created was found to be nearly the same for a range of atomic species — if scaled as a /r vdW, where r vdW is the van der Waals length. Here, we discuss some of the physical principles related to these observations that emerge from solving the three-body problem with van der Waals interactions in the hyperspherical formalism. We also demonstrate the strong three-body multichannel nature of the problem and the importance of properly accounting for nonadiabatic effects.


Ultracold Atom Nonadiabatic Coupling Hyperspherical Formalism Full Numerical Calculation Single Channel Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Efimov, V.: Weakly-bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971) [Yad. Fiz. 12, 1080 (1970)]Google Scholar
  2. 2.
    Efimov, V.: Low-energy properties of three resonantly-interacting particles. Sov. J. Nucl. Phys. 29, 546 (1979) [Yad. Fiz. 29, 1058 (1979)]Google Scholar
  3. 3.
    Kraemer T. et al.: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Berninger M. et al.: Universality of the three-body parameter for Efimov states in ultracold cesium. Phys. Rev. Lett. 107, 120401 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Zaccanti M. et al.: Observation of an Efimov spectrum in an atomic system. Nature Phys. 5, 586 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Pollack S.E., Dries D., Hulet R.G.: Universality in three- and four-body bound states of ultracold atoms. Science 326, 1683 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Observation of universality in ultracold 7Li three-body recombination. Phys. Rev. Lett. 103, 163202 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Nuclear-spin-independent short-range three-body physics in ultracold atoms. Phys. Rev. Lett. 105, 103203 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Ottenstein T.B., Lompe T., Kohnen M., Wenz A.N., Jochim S.: Collisional stability of a three-component degenerate Fermi gas. Phys. Rev. Lett. 101, 203202 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Lompe T. et al.: Atom-dimer scattering in a three-component Fermi gas. Phys. Rev. Lett. 105, 103201 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Huckans J.H., Williams J.R., Hazlett E.L., Stites R.W., OHara K.M.: Three-body recombination in a three-state Fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Williams J.R. et al.: Evidence for an excited-state Efimov trimer in a three-component Fermi gas. Phys. Rev. Lett. 103, 130404 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Wild J.R., Makotyn P., Pino J.M., Cornell E.A., Jin D.S.: Measurements of Tan’s contact in an atomic Bose-Einstein condensate. Phys. Rev. Lett. 108, 145305 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Thomas L.H.: The interaction between a neutron and a proton and the Structure of H3. Phys. Rev. 47, 903 (1935)ADSCrossRefGoogle Scholar
  15. 15.
    Naidon P., Hiyama E., Ueda M.: Universality and the three-body parameter of helium-4 trimers. Phys. Rev. A 86, 012502 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Chin, C.: Universal scaling of Efimov resonance positions in cold atom systems. arxiv:1111.1484 (2011)Google Scholar
  17. 17.
    Wang J., D’Incao J.P., Esry B.D., Greene Chris H.: Origin of the three-body parameter universality in Efimov physics. Phys. Rev. Lett. 108, 263001 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Schmidt R., Rath S.P., Zwerger W.: Efimov physics beyond universality. Eur. Phys. J. B 85, 386 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Sørensen P.K., Fedorov D.V., Jensen A.S., Zinner N.T.: Efimov physics and the three-body parameter within a two-channel framework. Phys. Rev. A 86, 052516 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Naidon, P., Endo, S., Ueda, M.: Physical origin of the universal three-body parameter in atomic Efimov physics. arXiv:1208.3912Google Scholar
  21. 21.
    D’Incao J.P., Greene C.H., Esry B.D.: The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases. J. Phys. B 42, 044016 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Suno, H., Esry, B.D., Greene, C.H., Burke: Three-body recombination of cold helium atoms. Phys. Rev. A 65, 042725 (2002)Google Scholar
  23. 23.
    Wang J., D’Incao J.P., Greene C.H.: Numerical study of three-body recombination for systems with many bound states. Phys. Rev. A 84, 052721 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Petrov D.S.: Three-boson problem near a narrow Feshbach resonance. Phys. Rev. Lett. 93, 143201 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Gogolin A.O., Mora C., Egger R.: Analytical solution of the bosonic three-body problem. Phys. Rev. Lett. 100, 140404 (2008)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Wang Y., D’Incao J.P., Esry B.D.: Ultracold three-body collisions near narrow Feshbach resonances. Phys. Rev. A 83, 042710 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Wang Y., Wang J., D’Incao J.P., Greene Chris, H.: Universal three-body parameter in heteronuclear atomic systems. Phys. Rev. Lett. 109, 243201 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Wang J., D’Incao J.P., Wang Y., Greene Chris, H.: Universal three-body recombination via resonant d-wave interactions. Phys. Rev. A 86, 062511 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • J. P. D’Incao
    • 1
  • J. Wang
    • 2
  • B. D. Esry
    • 3
  • C. H. Greene
    • 4
  1. 1.Department of Physics and JILAUniversity of ColoradoBoulderUSA
  2. 2.Department of PhysicsUniversity of ConnecticutStorrsUSA
  3. 3.Department of PhysicsKansas State UniversityManhattanUSA
  4. 4.Department of PhysicsPurdue UniversityWest LafayetteUSA

Personalised recommendations