Advertisement

Few-Body Systems

, Volume 54, Issue 11, pp 1997–1999 | Cite as

On Multi-Point Liouville Field Theory

  • S. ZarrinkamarEmail author
  • H. Hassanabadi
  • A. A. Rajabi
Article
  • 68 Downloads

Abstract

In many cases, the classical or semi-classical Liouville field theory appears in the form of Fuchsian or Riemann differential equations whose solutions cannot be simply found, or atleast require a comprehensive knowledge on analytical techniques of differential equations of mathematical physics. Here, instead of other cumbersome methodologies such as treating with the Heun functions, we use the quasi-exact ansatz approach and thereby solve the so-called resulting two- and three-point differential equations in a very simple manner. We apply the approach to two recent papers in the field.

Keywords

Liouville Theory Tachyon Condensation Conformal Bootstrap Liouville Action Heun Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zamolodchikov A.B., Zamolodchikov Al.B.: Conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577 (1996)MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Harlow D., Maltz J., Witten E.: Analytic continuation of Liouville theory. JHEP 12, 71 (2011)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Hama N., Hosomichi K., Lee S.: SUSY gauge theories on squashed three-spheres. JHEP 5, 14 (2011)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Teschner J.: On the Liouville three-point function. Phys. Lett. B 363, 65 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Rashkov R.C., Stanishkov M.: Three-point correlation functions in N = 1 super Liouville theory. Phys. Lett. B 380, 49 (1996)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    O’Raifeartaigh L., Sreedhar V.V.: Duality in Liouville theory as a reduced symmetry. Phys. Lett. B 461, 66 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonelli G., Maruyoshi K., Tanzini A.: Instantons on ALE spaces and super Liouville conformal field theories. JHEP 8, 56 (2011)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Nakayama Y.: Liouville field theory. Int. J. Mod. Phys. A 19, 2171 (2004)CrossRefGoogle Scholar
  9. 9.
    Ponsot B., Teschner J.: Boundary Liouville field theory: boundary three-point function. Nucl. Phys. B 622, 309 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Maruyoshi K., Taki M.: Deformed prepotential, quantum integrable system and Liouville field theory. Nucl. Phys. B 841, 388 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Chekhov L., Fock V.V.: A quantum Teichmüller space. Theor. Math. Phys. 120, 1245 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gaiotto, D., Witten, E.: Knot invariants from four-dimensional gauge theory. arXiv:1106.4789Google Scholar
  13. 13.
    Schomerus V.: Rolling tachyons from Liouville theory. JHEP 0311, 043 (2003)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Dong S.H., Ma Z., Espozito G.: Exact solutions of the Schrodinger equation with inverse-power potential in two dimensions. Found. Phys. Lett. 12, 465 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hassanabadi H., Yazarloo B.H., Zarrinkamar S., Rajabi A.A.: Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Poincare A.: Les fonctions fuchsiennes e l’équation Δ =  exp(u). J. Math. Pures Appl. (5) (4), 157 (1898)MathSciNetGoogle Scholar
  17. 17.
    Klein F.: Neue Beiträge zur Riemann’schen Funktionentheorie. Math. Ann. 21, 201 (1883)CrossRefGoogle Scholar
  18. 18.
    Poincare A.: Sur les groupos des equations lineaires. Acta Math. 4, 201 (1884)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Basic Sciences, Garmsar BranchIslamic Azad UniversityGarmsarIran
  2. 2.Physics DepartmentShahrood University of TechnologyShahroodIran

Personalised recommendations