Few-Body Systems

, Volume 54, Issue 12, pp 2357–2393 | Cite as

Off-shell Effect of the Quark-model NN Interaction in the Nd Scattering



Low- and medium-energy nucleon–deuteron (Nd) scattering less than the incident energy 65 MeV per nucleon is examined by using the quark-model nucleon–nucleon (NN) interaction fss2. The off-shell effect of this non-local interaction yields a part of the attractive effect given by the three-nucleon force in the standard description by the meson-exchange potentials. The triton binding energy and the spin-doublet scattering length are well described by fss2 without introducing the three-nucleon force. The nucleon analyzing power is slightly improved from the results by the AV18 potential, but the so-called A y puzzle in the low-energy region is not essentially solved nor is the similar deficiency of the peak heights seen in the vector analyzing power of the deuteron, iT 11(θ). Other observables are rather similar to the predictions by meson-exchange potentials, including disagreements of the deuteron breakup differential cross sections with experiment for some particular kinematical configurations. The space-star anomaly of the nd and pd scattering at E N = 13 MeV is not improved. The accurate and systematic KVI data of the \({^{1}H(\overrightarrow{d}, 2p)n}\) scattering at E d = 130 MeV are compared with the predictions by fss2 for the breakup differential cross sections and the deuteron analyzing powers.


Differential Cross Section Coulomb Effect Vector Analyze Power Triton Binding Energy Baryon Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujiwara Y., Suzuki Y., Nakamoto C.: Baryon–baryon interactions in the SU 6 quark model and their applications to light nuclear systems. Prog. Part. Nucl. Phys. 58, 439–520 (2007)ADSGoogle Scholar
  2. 2.
    Suzuki Y., Matsumura H., Orabi M., Fujiwara Y., Descouvemont P., Theeten M., Baye D.: Local versus nonlocal α α interaction in 3 α description of 12 C. Phys. Lett. B 659, 160–164 (2008)ADSGoogle Scholar
  3. 3.
    Fujiwara Y., Suzuki Y., Kohno M., Miyagawa K.: Addendum: triton and hypertriton binding energies calculated from SU 6 quark-model baryon–baryon interactions. Phys. Rev. C 77, 027001 (2008)ADSGoogle Scholar
  4. 4.
    Nogga A., Kamada H., Glöckle W.: Modern nuclear force predictions for the α particle. Phys. Rev. Lett. 85, 944 (2000)ADSGoogle Scholar
  5. 5.
    Fujiwara Y., Suzuki Y., Miyagawa K., Kohno M., Nemura H.: Redundant components in the 3 α Faddeev equation using the 2 α RGM kernel. Prog. Theor. Phys. 107, 993 (2002)ADSGoogle Scholar
  6. 6.
    Alt E.O., Grassberger P., Sandhas W.: Reduction of the three-particle collision problem to multi-channel two-particle Lippmann–Schwinger equations. Nucl. Phys. B 2, 167 (1967)ADSGoogle Scholar
  7. 7.
    Fukukawa K., Fujiwara Y., Suzuki Y.: Gaussian nonlocal potentials for the quark-model baryon–baryon interactios. Mod. Phys. Lett. A 24, 1035–1038 (2009)ADSMATHGoogle Scholar
  8. 8.
    Noyes H.P.: New nonsingular integral equation for two-particle scattering. Phys. Rev. Lett. 15, 538 (1965)MathSciNetADSGoogle Scholar
  9. 9.
    Kowalski, K.L.: Off-shell equations for two-particle scattering. Phys. Rev. Lett. 15, 798; 908 (E) (1965)Google Scholar
  10. 10.
    Witała H., Cornelius Th., Glöckle W.: Elastic scattering and break-up process in the nd system. Few-Body Syst. 3, 123 (1988)ADSGoogle Scholar
  11. 11.
    Fujiwara Y., Fukukawa K.: A practical method to solve cut-off Coulomb problems in the momentum space—application to the Lippmann–Schwinger resonating-group method and the pd elastic scattering –. Prog. Theor. Phys. 128, 301 (2012)ADSMATHGoogle Scholar
  12. 12.
    Fujiwara Y., Fujita T., Kohno M., Nakamoto C., Suzuki Y.: Resonating-group study of baryon–baryon interactions for the complete baryon octet: NN interaction. Phys. Rev. C 65, 014002 (2002)ADSGoogle Scholar
  13. 13.
    Fujiwara Y., Kohno M., Nakamoto C., Suzuki Y.: Interactions between octet baryons in the SU 6 quark model. Phys. Rev. C 64, 054001 (2001)ADSGoogle Scholar
  14. 14.
    Arndt, R.A.: Scattering Analysis Interactive Dial-up (SAID). Virginia Polytechnic Institute, Blacksburg, Virginia (Private Communication)Google Scholar
  15. 15.
    Fujiwara Y., Kohno M., Fujita T., Nakamoto C., Suzuki Y.: Lippmann–Schwinger resonating-group formalism for NN and YN interactions in an SU 6 quark model. Prog. Theor. Phys. 103, 755–794 (2000)ADSGoogle Scholar
  16. 16.
    Fujiwara Y., Nemura H., Suzuki Y., Miyagawa K., Kohno M.: Three-cluster equation using two-cluster RGM kernel. Prog. Theor. Phys. 107, 745 (2002)ADSMATHGoogle Scholar
  17. 17.
    Kohno M., Fujiwara Y., Fujita T., Nakamoto C., Suzuki Y.: Hyperon single-particle potentials calculated from SU 6 quark-model baryon–baryon interactions. Nucl. Phys. A 674, 229–245 (2000)ADSGoogle Scholar
  18. 18.
    Fujiwara Y., Kohno M., Nakamoto C., Suzuki Y.: G-matrix equation in the quark-model resonating-group method for baryon–baryon interaction. Prog. Theor. Phys. 104, 1025–1040 (2000)ADSGoogle Scholar
  19. 19.
    Fujiwara, Y.: QMPACK homepage. http://qmpack.homelinux.com/~qmpack/index.php
  20. 20.
    Glöckle W.: The Quantum Mechanical Few-Body Problem, Texts and Monographs in Physics. Springer, Berlin, Berlin (1983)Google Scholar
  21. 21.
    Glöckle W., Witała H., Hüber D., Kamada H., Golak J.: The three nucleon continuum: achievements, challenges and applications. Phys. Rep. 274, 107 (1996)ADSGoogle Scholar
  22. 22.
    Fujiwara Y., Fukukawa K.: Quark-model baryon–baryon interaction applied to neutron–deuteron scattering. I—Noyes–Kowalski approach to the AGS equations. Prog. Theor. Phys. 124, 433 (2010)ADSMATHGoogle Scholar
  23. 23.
    Fukukawa K., Fujiwara Y.: Effective-range expansion of the nd scattering studied by a quark-model nonlocal gaussian potential. Prog. Theor. Phys. 125, 957 (2011)ADSMATHGoogle Scholar
  24. 24.
    Seyler R.G.: Polarization from scattering polarized spin-1/2 on unpolarized spin-1 particles. Nucl. Phys. A 124, 253 (1969)ADSGoogle Scholar
  25. 25.
    Glöckle W., Hasberg G., Neghabian A.R.: Numerical treatment of few body equations in momentum space by the spline method. Z. Phys. A 305, 217 (1982)MathSciNetADSGoogle Scholar
  26. 26.
    Elster Ch., Liu H., Glöckle W.: Three-body scattering at intermediate energies. Phys. Rev. C 72, 054003 (2005)ADSGoogle Scholar
  27. 27.
    Alt E.O., Sandhas W., Zankel H., Ziegelmann H.: Coulomb corrections in proton–deuteron scattering. Phys. Rev. Lett. 37, 1537 (1976)ADSGoogle Scholar
  28. 28.
    Alt E.O., Sandhas W.: Scattering amplitudes and integral equations for the collision of two charged composite particles. Phys. Rev. C 21, 1733 (1980)ADSGoogle Scholar
  29. 29.
    Alt E.O., Sandhas W., Ziegelmann H.: Calculation of proton–deuteron phase parameters including the Coulomb force. Nucl. Phys. A 445, 429 (1985)ADSGoogle Scholar
  30. 30.
    Alt E.O., Mukhamedzhanov A.M., Nishonov M.M., Sattarov A.I., Sandhas W.: Proton–deuteron elastic scattering from 2.5 to 22.7 MeV. Phys. Rev. C 65, 064613 (2002)ADSGoogle Scholar
  31. 31.
    Deltuva A., Fonseca A.C., Sauer P.U.: Momentum-space treatment of the Coulomb interaction in three-nucleon reactions with two protons. Phys. Rev. C 71, 054005 (2005)ADSGoogle Scholar
  32. 32.
    Deltuva A., Fonseca A.C., Sauer P.U.: Momentum-space description of three-nucleon breakup reactions including the Coulomb interaction. Phys. Rev. C 72, 054004 (2005)ADSGoogle Scholar
  33. 33.
    Deltuva A., Fonseca A.C., Kievsky A., Rosati S., Sauer P.U., Viviani M.: Benchmark calculation for proton–deuteron elastic scattering observables including the Coulomb interaction. Phys. Rev. C 71, 064003 (2005)ADSGoogle Scholar
  34. 34.
    Vincent C.M., Phatak S.C.: Accurate momentum-space method for scattering by nuclear and Coulomb potential. Phys. Rev. C 10, 391 (1974)ADSGoogle Scholar
  35. 35.
    Ohlsen G.G.: Kinematic relations in reactions of the form a+b → c+d+e. Nucl. Instrum. Methods 37, 240 (1965)ADSGoogle Scholar
  36. 36.
    Fujiwara Y., Fukukawa K.: Quark-model baryon–baryon interaction applied to neutron–deuteron scattering. III—Breakup differential cross sections. Prog. Theor. Phys. 125, 972 (2011)ADSGoogle Scholar
  37. 37.
    Fukukawa K., Fujiwara Y.: Quark-model baryon–baryon interaction applied to neutron–deuteron scattering. II—Polarization observables of the elastic scattering. Prog. Theor. Phys. 125, 729 (2011)ADSMATHGoogle Scholar
  38. 38.
    Kievsky A., Rosati S., Tornow W., Viviani M.: Critical comparison of experimental data and theoretical predictions for nd scattering below the breakup threshold. Nucl. Phys. A 607, 402 (1996)ADSGoogle Scholar
  39. 39.
    Chen Z.M., Tornow W., Kievsky A.: Extension of proton–deuteron phase-shift analysis to E p = 22.7 MeV and 4 P J phase shifts. Few-Body Syst. 35, 15 (2004)ADSGoogle Scholar
  40. 40.
    Tornow W., Witała H.: Evaluation of the three-nucleon analyzing power puzzle. Nucl. Phys. A 637, 280 (1998)ADSGoogle Scholar
  41. 41.
    Tornow W., Kievsky A., Witała H.: Improved proton–deuteron phase-shift analysis above the deuteron-breakup threshold and the three-nucleon analyzing power puzzle. Few-Body Syst. 32, 53 (2002)ADSGoogle Scholar
  42. 42.
    Kievsky A., Friar J.I., Payne G.L., Rosati S., Viviani M.: Phase shifts and mixing parameters for low-energy proton–deuteron scattering. Phys. Rev. C 63, 064004 (2001)ADSGoogle Scholar
  43. 43.
    Ishikawa S.: Low-energy proton–deuteron scattering with a Coulomb-modified Faddeev equation. Few-Body Syst. 32, 229 (2003)ADSGoogle Scholar
  44. 44.
    Ishikawa S.: Coordinate space proton–deuteron scattering calculations including Coulomb force effects. Phys. Rev. C 80, 054002 (2009)ADSGoogle Scholar
  45. 45.
    Delves L.M.: Low-energy photodisintegration of 3 He and neutron–deuteron scattering. Phys. Rev. 118, 1318 (1960)ADSGoogle Scholar
  46. 46.
    Barton G., Phillips A.C.: Neutron–deuteron scattering near threshold: on-shell two-body approach. Nucl. Phys. A 132, 97 (1969)ADSGoogle Scholar
  47. 47.
    Reiner A.S.: On the anomalous effective range expansion for nucleon-deuteron scattering in the S = 1/2 state. Phys. Lett. B 28, 387 (1969)ADSGoogle Scholar
  48. 48.
    Whiting J.S., Fuda M.G.: Pole in k cot δ for doublet, s-wave, nd scatteing. Phys. Rev. C 14, 18 (1976)ADSGoogle Scholar
  49. 49.
    Friar J.L., Hüber D., van Kolck U.: Chiral symmetry and three-nucleon forces. Phys. Rev. C 59, 53 (1999)ADSGoogle Scholar
  50. 50.
    Coon S.A., Han H.K.: Reworking the Tucson–Melbourne three-nucleon potential. Few-Body Syst. 30, 131 (2001)ADSGoogle Scholar
  51. 51.
    Witała H., Nogga A., Kamada H., Glöckle W., Golak J., Skibiński R.: Modern nuclear force predictions for the neutron–deuteron scattering lengths. Phys. Rev. C 68, 034002 (2003)ADSGoogle Scholar
  52. 52.
    Dilg W., Koester L., Nistler W.: The neutron–deuteron scattering lengths. Phys. Lett. B 36, 208 (1971)ADSGoogle Scholar
  53. 53.
    Schlessinger L.: Use of analyticity in the calculation of nonrelativistic scattering amplitudes. Phys. Rev. 167, 1411 (1968)ADSGoogle Scholar
  54. 54.
    Phillips A.C.: Consistency of the low-energy three-nucleon observables and separable interaction model. Nucl. Phys. A 107, 209 (1968)ADSGoogle Scholar
  55. 55.
    Schwarz P., Klages H.O., Doll P., Haesner B., Wilczynski J., Zeitnitz B., Kecskemeti J.: Elastic neutron–deuteron scattering in the energy range from 2.5 MeV to 30 MeV. Nucl. Phys. A 398, 1 (1983)ADSGoogle Scholar
  56. 56.
    Seagrave J.D., Hopkins J.C., Dixon D.R. Jr, Keaton P.W., Kerr E.C., Niiler A., Sherman R.H., Walter R.K.: Elastic scattering and polarization of fast neutrons by liquid deuterium and tritium. Ann. Phys. 74, 250 (1972)ADSGoogle Scholar
  57. 57.
    Pauletta G., Brooks F.D.: Cross sections for the n + d breakup reaction. Nucl. Phys. A 255, 267 (1975)ADSGoogle Scholar
  58. 58.
    Holmberg M.: The (n, 2n) cross section of 2 H in the energy region 4.0–6.5 MeV. Nucl. Phys. A 129, 327 (1969)ADSGoogle Scholar
  59. 59.
    Catron H.C., Goldberg M.D., Hill R.W., LeBlanc J.M., Stoering J.P., Taylor C.J., Williamson M.A.: Deuterium and beryllium (n,2n) cross sections between 6 and 10 MeV. Phys. Rev. 123, 218 (1961)ADSGoogle Scholar
  60. 60.
    Gibbons J.H., Macklin R.L.: Total neutron yields from light elements under proton and alpha bombardment. Phys. Rev. 114, 571 (1959)ADSGoogle Scholar
  61. 61.
    Kievsky A., Brune C.R., Viviani M.: Total cross section for pd breakup below 30 MeV. Phys. Lett. B 480, 250 (2000)ADSGoogle Scholar
  62. 62.
    Carlson R.F., Doherty P., Margaziotis D.J., Slaus I., Tin S.Y., van Oers W.T.H.: Proton-deuteron total reaction cross-sections in the energy range (20–50) MeV. Lettere Al Nuovo Cimento 8, 319 (1973)MATHGoogle Scholar
  63. 63.
    Clement J.M., Stoler P., Goulding C.A., Fairchild R.W.: Hydrogen and deuterium total neutron cross sections in the MeV region. Nucl. Phys. A 183, 51 (1972)ADSGoogle Scholar
  64. 64.
    Seagrave J.D., Henkel R.L.: Total cross section of deuterium for neutrons from 0.2 MeV to 22 MeV. Phys. Rev. 98, 666 (1955)ADSGoogle Scholar
  65. 65.
    Phillips T.W., Berman B.L., Seagrave J.D.: Neutron total cross section for tritium. Phys. Rev. C 22, 384 (1980)ADSGoogle Scholar
  66. 66.
    Nuckolls R.G., Bailey C.L., Bennett W.E., Bergstralh T., Richards H.T., Williams J.H.: The total scattering cross sections of deuterium and oxygen for fast neutrons. Phys. Rev. 70, 805 (1946)ADSGoogle Scholar
  67. 67.
    Willard H.B., Bair J.K., Jones C.M.: nd scattering: a search for effects due to the dineutron. Phys. Lett. 9, 339 (1964)ADSGoogle Scholar
  68. 68.
    Kievsky A., Viviani M., Rosati S.: Polarization observables in pd scattering below 30 MeV. Phys. Rev. C 64, 024002 (2001)ADSGoogle Scholar
  69. 69.
    Doleschall P., Grüebler W., König V., Schmelzbach P.A., Sperisen F., Jenny B.: Improved NN interaction tested with pd elastic scattering at E p = 10 MeV. Nucl. Phys. A 380, 72 (1982)ADSGoogle Scholar
  70. 70.
    Berthold G.H., Stadler A., Zankel H.: Faddeev calculations for low-energy pd scattering. Phys. Rev. C 41, 1365 (1990)ADSGoogle Scholar
  71. 71.
    Kocher D.C., Clegg T.B.: Cross sections for proton–deuteron scattering from 1.0 to 10.0 MeV. Nucl. Phys. A 132, 455 (1969)ADSGoogle Scholar
  72. 72.
    Huttel E., Arnold W., Berg H., Krause H.H., Ulbricht J., Clausnitzer G.: Phase-shift analysis of pd elastic scattering below break-up threshold. Nucl. Phys. A 406, 435 (1983)ADSGoogle Scholar
  73. 73.
    Kievsky A., Wood M.H., Brune C.R., Fisher B.M., Karwowski H.J., Leonard D.S., Ludwig E.J., Rosati S., Viviani M.: Evidence for three nucleon force effects in pd elastic scattering. Phys. Rev. C 63, 024005 (2001)ADSGoogle Scholar
  74. 74.
    Elwyn A.J., Lane R.O., Langsdorf A. Jr: Polarization and differential cross sections in nd scattering. Phys. Rev. 128, 779 (1962)ADSGoogle Scholar
  75. 75.
    Sagara K., Oguri H., Shimizu S., Maeda K., Nakamura H., Nakashima T., Morinobu S.: Energy dependence of analyzing power A y and cross section for p+d scattering below 18 MeV. Phys. Rev. C 50, 576 (1994)ADSGoogle Scholar
  76. 76.
    Grüebler W., König V., Schmelzbach P.A., Sperisen F., Jenny B., White R.E., Seiler F., Roser H.W.: Investigation of the three-nucleon system by pd elastic scattering with polarized protons and deuterons. Nucl. Phys. A 398, 445 (1983)ADSGoogle Scholar
  77. 77.
    Sperisen F., Grüebler W., König V., Schmelzbach P.A., Elsener K., Jenny B., Schweizer C., Ulbricht J., Doleschall P.: Comparison of a nearly complete pd elastic scattering data set with Faddeev calculations. Nucl. Phys. A 422, 81 (1984)ADSGoogle Scholar
  78. 78.
    Cahill T.A., Greenwood J., Willmes H., Shadoan D.J.: Elastic scattering of protons by deuterium between 15 and 20 MeV. Phys. Rev. C 4, 1499 (1971)ADSGoogle Scholar
  79. 79.
    Bunker S.N., Cameron J.M., Carlson R.F., Richardson J.R., Tomas P., van Oers W.T.H., Verba J.W.: Differential cross sections and polarizations in elastic pd scattering at medium energies. Nucl. Phys. A 113, 461 (1968)ADSGoogle Scholar
  80. 80.
    Shimizu H., Imai K., Tamura N., Nisimura K., Hatanaka K., Saito T., Koike Y.: Analyzing powers and cross sections in elastic pd scattering at 65 MeV. Nucl. Phys. A 382, 242 (1982)ADSGoogle Scholar
  81. 81.
    Sekiguchi K., Sakai H., Witała H., Glöckle W., Golak J., Hatano M., Kamada H., Kato H., Maeda Y., Nishikawa J., Nogga A., Ohnishi T., Okamura H., Sakamoto N., Sakoda S., Satou Y., Suda K., Tamii A., Uesaka T., Wakasa T., Yako K.: Complete set of precise deuteron analyzing powers at intermediate energies: comparison with modern nuclear force predictions. Phys. Rev. C 65, 034003 (2002)ADSGoogle Scholar
  82. 82.
    Chamberlain Owen., Stern Martin O.: Elastic scattering of 190-MeV deuterons by protons. Phys. Rev. 94, 666 (1954)ADSMATHGoogle Scholar
  83. 83.
    Mermod, P., Blomgren, J., Hildebrand, A., Johansson, C., Klug, J., Österlund, M., Pomp, S., Tippawan, U., Bergenwall, B., Nilsson, L. Olsson, N., Jonsson, O., Prokofiev, A., Renberg, P. U., Nadel-Turonski, P., Maeda, Y., Sakai, H., Tamii, A.: Evidence of three-body force effects in neutron–deuteron scattering at 95 MeV. Phys. Rev. C 72, 061002(R) (2005)Google Scholar
  84. 84.
    Hatanaka K., Matsuoka N., Sakai H., Saito T., Hosono K., Koike Y., Kondo M., Imai K., Shimizu H., Ichihara T., Nisimura K., Okihana A.: Measurements of analyzing powers A y, A xx, A yy and A xz in dp elastic scattering at E d =  56 MeV. Nucl. Phys. A 426, 77 (1984)ADSGoogle Scholar
  85. 85.
    Nemoto S., Chmielewski K., Oryu S., Sauer P.U.: Discrepancy in the cross section minimum of elastic nucleon-deuteron scattering. Phys. Rev. C 58, 2599 (1998)ADSGoogle Scholar
  86. 86.
    Shimizu S., Sagara K., Nakamura H., Maeda K., Miwa T., Nishimori N., Ueno S., Nakashima T., Morinobu S.: Analyzing powers of p + d scattering below the deuteron breakup threshold. Phys. Rev. C 52, 1193 (1995)ADSGoogle Scholar
  87. 87.
    Neidel E.M., Tornow W., González Trotter D.E., Howell C.R., Crowell A.S., Macri R.A., Walter R.L., Weisel G.J., Esterline J., Witała H., Crowe B.J. III, Pedroni R.S., Markoff D.M.: A new twist to the long-standing three-nucleon analyzing power puzzle. Phys. Lett. B 552, 29 (2003)ADSGoogle Scholar
  88. 88.
    McAninch J.E., Lamm L.O., Haeberli W.: Analyzing power in neutron–deuteron elastic scattering at E n lab =  3 MeV. Phys. Rev. C 50, 589 (1994)ADSGoogle Scholar
  89. 89.
    Tornow W., Howell C.R., Alohali M., Chen Z.P., Felsher P.D., Hanly J.M., Walter R.L., Weisel G., Mertens G., Slaus I., Witała H., Glöckle W.: The low-energy neutron–deuteron analyzing power and the 3 P 0,1,2 interactions of nucleon–nucleon potentials. Phys. Lett. B 257, 273 (1991)ADSGoogle Scholar
  90. 90.
    Howell C.R., Tornow W., Murphy K., Pfützner H.G., Roberts M.L., Li Anli., Felsher P.D., Walter R.L., Šlaus I., Treado P.A., Koike Y.: Comparisons of vector analyzing-power data and calculation for neutron–deuteron elastic scattering from 10 to 14 MeV. Few-Body Syst. 2, 19 (1987)ADSGoogle Scholar
  91. 91.
    Cub J., Finckh E., Frieß H., Fuchs G., Gebhardt K., Geißdörfer K., Lin R., Strate J.: Analyzing power for elastic nd scattering at 13 MeV. Few-Body Syst. 6, 151 (1989)ADSGoogle Scholar
  92. 92.
    Fujita T., Sagara K., Shigenaga K., Tsuruta K., Yagita T., Nakashima T., Nishimori N., Nakamura H., Akiyoshi H.: Difference between nd A y and pd A y below 16 MeV. AIP Conf. Proc. 570, 709 (2001)ADSGoogle Scholar
  93. 93.
    Weisel G.J., Tornow W., Crowe B.J. III, Crowell A.S., Esterline J.H., Howell C.R., Kelley J.H., Macri R.A., Pedroni R.S., Walter R.L., Witała H.: Neutron–deuteron analyzing power data at 19.0 MeV. Phys. Rev. C 81, 024003 (2010)ADSGoogle Scholar
  94. 94.
    Witała H., Hüber D., Glöckle W.: Analyzing power puzzle in low-energy elastic nd scattering. Phys. Rev. C 49, R14 (1994)ADSGoogle Scholar
  95. 95.
    Kievsky A., Viviani M., Rosati S.: Cross section, polarization observables, and phase-shift parameters in pd and nd elastic scatteing. Phys. Rev. C 52, R15 (1995)ADSGoogle Scholar
  96. 96.
    Wood M.H., Brune C.R., Fisher B.M., Karwowski H.J., Leonard D.S., Ludwig E.J., Kievsky A., Rosati S., Viviani M.: Low-energy pd scattering: High-precision data, comparisons with theory, and phase-shift analyses. Phys. Rev. C 65, 034002 (2002)ADSGoogle Scholar
  97. 97.
    Faivre J.C., Garreta D., Jungerman J., Papineau A., Sura J., Tarrats A.: Polarization in the elastic scattering of protons from deuterons from 11 to 22.7 MeV. Nucl. Phys. A 127, 169 (1969)ADSGoogle Scholar
  98. 98.
    Conzett H.E.: Tensor analyzing powers in deuteron–proton elastic scattering and the breakup reaction at 45.4 MeV. Lect. Note. Phys. 87, 477 (1978)ADSGoogle Scholar
  99. 99.
    Johnston A.R., Gibson W.R., Megaw J.H.P.C., Griffiths R.J., Eisberg R.M.: Polarization in the elastic scattering at backward angles of 30 MeV protons from deuterons. Phys. Lett. 19, 289 (1965)ADSGoogle Scholar
  100. 100.
    Dobiash H., Fischer R., Haesner B., Klages H.O., Schwarz P., Zeitnitz B., Maschuw R., Sinram K., Wick K.: Polarization in neutron–deuteron scattering at 30 MeV. Phys. Lett. B 76, 195 (1978)ADSGoogle Scholar
  101. 101.
    Zamudio-Cristi J., Bonner B.E., Brady F.P., Jungerman J.A., Wang J.: Measurement of neutron–deuteorn polarization at 35 MeV. Phys. Rev. Lett. 31, 1009 (1973)ADSGoogle Scholar
  102. 102.
    Tornow W., Esterline J.H., Weisel G.J.: Energy dependence of the three-nucleon analyzing power puzzle. J. Phys. G 35, 125104 (2008)ADSGoogle Scholar
  103. 103.
    Ishikawa, S.: Spin-dependent three-nucleon force effects on nucleon-deuteron scattering. Phys. Rev. C 75, 061002(R) (2007)Google Scholar
  104. 104.
    Sawada M., Seki S., Furuno K., Tagishi Y., Nagashima Y., Shimizu J., Ishikawa M., Sugiyama T., Chuang L.S., Grüebler W., Sanada J.: Complete set of first-order polarization observables in nucleon–deuteron elastic scattering near 20 MeV deuteron energy. Phys. Rev. C 27, 1932 (1983)ADSGoogle Scholar
  105. 105.
    Koike Y., Haidenbauer J.: The neutron–deuteron elastic scattering with the Paris potential. Nucl. Phys., A463:365c (1987)Google Scholar
  106. 106.
    Rauprich G., Hähn H.J., Karus M., Nießen P., Nyga K.R., Oswald H., Sydow L., Paetz gen. Schieck H., Koike Y.: Measurement of \({d(\overrightarrow{p}, p)d}\) elastic scattering at 10.0, 12.0, 14.1 and 16.5 MeV especially for small forward and extreme backward scattering angles. Few-Body Syst. 5, 67 (1988)ADSGoogle Scholar
  107. 107.
    Sowinski J., Pun Casavant D.D., Knutson L.D.: High precision measurement of the analyzing powers for dp elastic scattering at E d = 10 MeV. Nucl. Phys. A 464, 223 (1987)ADSGoogle Scholar
  108. 108.
    Witała H., Glöckle W., Antonuk L.E., Arvieux J., Bachelier D., Bonin B., Boudard A., Cameron J.M., Fielding H.W., Garçon M., Jourdan F., Lapointe C., McDonald W.J., Pasos J., Roy G., The I., Tinslay J., Tornow W., Yonnet J., Ziegler W.: Complete set of deuteron analyzing powers in deuteron–proton elastic scattering: measurement and realistic potential prediction. Few-Body Syst. 15, 67 (1993)ADSGoogle Scholar
  109. 109.
    Rauprich G., Lemaître S., Niessen P., Nyga K.R., Reckenfelderbäumer R., Sydow L., Paetz gen. Schieck H., Witała H., Glöckle W.: Study of the kinematically complete breakup reaction \({^{2}{H}(\overrightarrow{p}, pp)n}\) at E p = 13.0 MeV with polarized protons. Nucl. Phys. A 535, 313 (1991)ADSGoogle Scholar
  110. 110.
    Strate J., Geissdörfer K., Lin R., Bielmeier W., Cub J., Ebneth A., Finckh E., Friess H., Fuchs G., Gebhardt K., Schindler S.: Differential cross section of the 2 H(n,nnp)-reaction at E n = 13 MeV. Nucl. Phys. A 501, 51 (1989)ADSGoogle Scholar
  111. 111.
    Howell C.R., Setze H.R., Tornow W., Braun R.T., Glöckle W., Hussein A.H., Lambert J.M., Mertens G., Roper C.D., Salinas F., Šlaus I., González Trotter D.E., Vlahović B., Walter R.L., Witała H.: Implications of the space-star anomaly in nd breakup. Nucl. Phys., A631:692c (1998)Google Scholar
  112. 112.
    Strate J., Geissdörfer K., Lin R., Finckh E., Cub J., Gebhardt K., Schindler S., Witała H., Glöckle W., Cornelius T.: A three-nucleon break-up experiment in comparison with a Faddeev calculation. J. Phys. G 14, L229 (1988)ADSGoogle Scholar
  113. 113.
    Setze H.R., Howell C.R., Tornow W., Braun R.T., Glöckle W., Hussein A.H., Lambert J.M., Mertens G., Roper C.D., Salinas F., Šlaus I., González Trotter D.E., Vlahović B., Walter R.L., Witała H.: Verification of the space-star anomaly in nd breakup. Phys. Lett. B 388, 229 (1996)ADSGoogle Scholar
  114. 114.
    Kuroś-Źołnierczuk J., Witała H., Golak J., Kamada H., Nogga A., Skibinśki R., Glöckle W.: Three-nucleon force effects in nucleon induced deuteron breakup. II. comparison to data. Phys. Rev. C 66, 024004 (2002)ADSGoogle Scholar
  115. 115.
    Kimura, S., Sagara, K., Kuroita, S., Yabe, T., Okamoto, M., Ishibashi, K., Tamura, T., Tanaka, S., Maeda, Y., Ooishi, Y.: Seach for QFS anomaly in pd breakup reaction below E p =  19 MeV. Few-Body Syst. doi: 10.1007/s00601-012-0393-3 (2012) (Online First)
  116. 116.
    Correll F.D., Brown R.E., Ohlsen G.G., Hardekopf R.A., Jarmie N., Lambert J.M., Treado P.A., Šlaus I., Schwandt P., Doleschall P.: Study of the reaction \({{H}(\overrightarrow{d}, 2p)n}\) at 16 MeV around collinear configurations. Nucl. Phys. A 475, 407 (1987)ADSGoogle Scholar
  117. 117.
    Kistryn St., Stephan E., Biegun A., Bodek K., Deltuva A., Epelbaum E., Ermisch K., Glöckle W., Golak J., Kalantar-Nayestanaki N., Kamada H., Kiš M., Kłos B., Kozela A., Kuroś- Zołnierczuk J., Mahjour-Shafiei M., Meißner U.G., Micherdzińska A., Nogga A., Sauer P.U., Skibiński R., Sworst R., Witała H., Zejma J., Zipper W.: Systematic study of three-nucleon force effects in the cross section of the deuteron–proton breakup at 130 MeV. Phys. Rev. C 72, 044006 (2005)ADSGoogle Scholar
  118. 118.
    Kistryn St., Stephan E., Kłos B., Biegun A., Bodek K., CiepałI., Deltuva A., Fonseca A.C., Kalantar-Nayestanaki N., Kiš M., Kozela A., Mahjour-Shafiei M., Micherdzińska A., Sauer P.U., Sworst R., Zejma J., Zipper W.: Evidence of the Coulomb-force effects in the cross-sections of the deuteron–proton breakup at 130 MeV. Phys. Lett. B 641, 23 (2006)ADSGoogle Scholar
  119. 119.
    Stephan E., Kistryn St., Sworst R., Biegun A., Bodek K., Ciepał I., Deltuva A., Epelbaum E., Fonseca A.C., Golak J., Kalantar-Nayestanaki N., Kamada H., Kiš M., Kłos B., Kozela A., Mahjour-Shafiei M., Micherdzińska A., Nogga A., Skibiński R., Witała H., Wrońska A., Zejma J., Zipper W.: Vector and tensor analyzing powers in deuteron–proton breakup at 130 MeV. Phys. Rev. C 82, 014003 (2010)ADSGoogle Scholar
  120. 120.
    Miwa, K., et al.: a proposal at J-PARC (2010)Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan
  2. 2.RIKEN Nishina CenterWakoJapan

Personalised recommendations