Advertisement

Few-Body Systems

, Volume 54, Issue 11, pp 1705–1717 | Cite as

To What Extent is Gluon Confinement an Empirical Fact?

  • R. L. Delgado
  • Carlos Hidalgo-Duque
  • Felipe J. Llanes-Estrada
Article

Abstract

Experimental verifications of confinement in hadron physics have established the absence of charges with a fraction of the electron’s charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus “Quark” Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about gluon confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.

Keywords

Color Factor Gluon Propagator Color Singlet Neutron Background Secondary Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perl M.L., Lee E.R., Loomba D.: Searches for fractionally charged particles. Annu. Rev. Nucl. Part. Sci. 59, 47–65 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Perl M.L., Lee E.R., Loomba D.: Review of particle physics. Mod. Phys. Lett. A. 19, 2595 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Nakamura, K.: Particle Data Group Collaboration. J. Phys. G. G37, 075021 (2010)Google Scholar
  4. 4.
    Bergsma, F., et al., CHARM collaboration.: Experimental limits on the production of fractionally charged particles in protonnucleus and neutrino-nucleus collisions. Zeit. Phys. C 24, 217 (1984)Google Scholar
  5. 5.
    Stevenson M.L.: Search for massive, long-lived, fractionally charged particles produced by 300-GeV protons. Phys. Rev. D. 20, 82 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    Antreasyan D. et al.: Search for quarks produced with large transverse momentum in 400-GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 513 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    Nash T. et al.: The IX International Conference on Quark Confinement and the Hadron Spectrum - QCHS-IX. In: Llanes-Estrada, F.J., Pelaez, J.R. (eds.) AIP Conference Proceedings, vol. 1343 (2011). Phys. Rev. Lett. 32, 858 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    See the collection of papers in the “Proceedings of the IXth International Conference on Quark Confinement and the Hadron Spectrum”, Madrid (2010)Google Scholar
  9. 9.
    Alkofer, R., Detmold, W., Fischer, C.S., Maris, P.: Analytic properties of the Landau gauge gluon and quark propagators. Phys. Rev. D70, 014014 (2004). hep-ph/0309077Google Scholar
  10. 10.
    Cucchieri, A., Mendes, T.: Constraints on the IR behavior of the gluon propagator in Yang-Mills theories. Phys. Rev. Lett. 100, 241601 (2008). arXiv:0712.3517 [hep-lat]Google Scholar
  11. 11.
    Fischer, C.S., Pawlowski, J.M.: Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II. Phys. Rev. D80, 025023 (2009). arXiv:0903.2193 [hep-th]Google Scholar
  12. 12.
    Aamodt, K., et al.: ALICE Collaboration. Production of pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with ALICE at the LHC, arXiv:1101.4110 [hep-ex]Google Scholar
  13. 13.
    Swift A.R., Rodriguez Marrero J.L.: Color confinement and the Qcd vacuum. Phys. Rev. D29, 1823 (1984)ADSGoogle Scholar
  14. 14.
    Sjöstrand, T., Mrenna, S., Skands, P.: Proceedings of Workshop on Physics at TeV Colliders, 2001. Les Houches, France. JHEP 05, 026 (2006)Google Scholar
  15. 15.
    Sjöstrand, T., Mrenna, S., Skands, P.: Toward a universal random number generator. Comput. Phys. Commun. 178, 852 (2008)Google Scholar
  16. 16.
    Amsler, C.: Particle Data Group Collaboration. Phys. Lett. B. 667, 1 (2008)Google Scholar
  17. 17.
    Boos, E., Dobbs, M., Giele, W., Hinchliffe, I., Huston, J., Ilyin, V., Kanzaki, J., Kato, K., et al.: Generic user process interface for event generators. hep-ph/0109068Google Scholar
  18. 18.
    Marsaglia G., Zaman A., Tsang W.W.: A Nonperturbative parton model of current interactions. Stat. Probab. Lett. 9, 35 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Landshoff P.V., Polkinghorne J.C., Short R.D.: A Nonperturbative parton model of current interactions. Nucl. Phys. B28, 225–239 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    Brodsky S.J., Close F.E., Gunion J.F.: A gauge-invariant scaling model of current interactions with regge behavior and finite fixed pole sum rules. Phys. Rev. D D8, 3678 (1973)ADSCrossRefGoogle Scholar
  21. 21.
    Szczepaniak, A.P., Londergan, J.T., Llanes-Estrada, F.J.: Regge exchange contribution to deeply virtual compton scattering. Acta Phys. Polon. B40, 2193–2223 (2009). arXiv:0707.1239 [hep-ph]Google Scholar
  22. 22.
    Simonov Y,A.: Glueball Regge trajectories and the Pomeron. Phys. Lett. B,249, 514–518 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    Llanes-Estrada, F.J., Cotanch, S.R., de A. Bicudo, P.J., Ribeiro, J.E.F.T., Szczepaniak, A.P.: QCD glueball Regge trajectories and the Pomeron. Nucl. Phys. A710, 45–54 (2002). hep-ph/0008212Google Scholar
  24. 24.
    Reisert, B., Vera, A.S., Zhang, Z.: Structure functions and low-x: Working Group Summary. 17th International Workshop On Deep-Inelastic Scattering and Related Subjects (DIS 2009), Madrid (2009). arXiv:0908.2194 [hep-ex]Google Scholar
  25. 25.
    Pelaez, J.R., Yndurain, F.J.: Regge analysis of pion pion (and pion kaon) scattering for energy s**1/2 > 1.4-GeV. Phys. Rev. D69, 114001 (2004). hep-ph/0312187Google Scholar
  26. 26.
    Pelaez, J.R.:Regge description of high energy pion pion total cross sections. Int. J. Mod. Phys. A 20, 628 (2005). arXiv:hep-ph/0407213Google Scholar
  27. 27.
    Doyle, A.T.: Diffraction at HERA: Experimental perspective. J.Phys. G G22, 797–814 (1996). hep-ex/9601005Google Scholar
  28. 28.
    Musulmanbekov, G.: NICA Collaboration, The NICA/MPD project at JINR. Nucl. Phys. A. 862–863, 244 (2011)Google Scholar
  29. 29.
    Bashir, A., Chang, L., Cloet, I.C., El-Bennich, B., Liu, Y.X., Roberts, C.D., Tandy, P.C.: Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 58, 79 (2012). arXiv:1201.3366 [nucl-th]Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • R. L. Delgado
    • 1
  • Carlos Hidalgo-Duque
    • 1
  • Felipe J. Llanes-Estrada
    • 1
  1. 1.Departamento de Física Teórica I and IIUniversidad Complutense de MadridMadridSpain

Personalised recommendations