Few-Body Systems

, Volume 53, Issue 3–4, pp 515–524 | Cite as

Approximate Solutions to the Dirac Equation with Effective Mass for the Manning–Rosen Potential in N Dimensions

  • M. K. Bahar
  • F. YasukEmail author


The solutions of the effective mass Dirac equation for the Manning–Rosen potential with the centrifugal term are studied approximately in N dimension. The relativistic energy spectrum and two-component spinor eigenfunctions are obtained by the asymptotic iteration method. We have also investigated eigenvalues of the effective mass Dirac–Manning–Rosen problem for α = 0  or  α = 1. In this case, the Manning–Rosen potential reduces to the Hulthen potential.


Effective Mass Dirac Equation Pseudospin Symmetry Centrifugal Term Asymptotic Iteration Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastard, G.: Wave Mechanics Applied to Semiconductor Heterostructure Les Editions de Physique, Les Ulis (1988)Google Scholar
  2. 2.
    Harrison P.: Quantum Wells, Wires and Dots. Wiley, New York (2000)Google Scholar
  3. 3.
    Serra L., Lipparini E.: Spin response of unpolarized quantum dots. Europhys. Lett. 40, 667 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Arias de Saavedra F., Boronat J., Polls A., Fabrocini A.: Effective mass of one He atom in liquid He. Phys. Rev. B 50, 4248 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Gora T., Williams F.: Theory of Electronic States and Transport in Graded Mixed Semiconductors. Phys. Rev. 177, 1179 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Plastino A.R., Rigo A., Casas M., Garcias F., Plastino A.: Supersymmetric approach to quantum systems with position-dependent effective mass. Phys. Rev. A 60, 4318 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    de Souza Dutra A., Almeida C.A.S.: Exact solvability of potentials with spatially dependent effective masses. Phys. Lett. A 275, 25 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Alhaidari A.D.: Solutions of the nonrelativistic wave equation with position-dependent effective mass. Phys. Rev. A 66, 042116 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Alhaidari A.D.: Nonrelativistic Green’s Function for Systems With Position-Dependent Mass. Int. J. Theor. Phys. 42, 2999 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Roy B., Roy P.: A Lie algebraic approach to effective mass Schrödinger equations. J. Phys. A 35, 3961 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Koç R., Koca M., Körcük E.: A new class of quasi-exactly solvable potentials with a position-dependent mass. J. Phys. A 35, L527 (2002)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Koç R., Koca M., Sahinoglu G.: Scattering in abrupt heterostructures using a position dependent mass Hamiltonian. Eur. Phys. J. B 48, 583 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Gönül B., Gönül O., Gönül B., F.: Exact solutions of effective-mass Schrödinger equation. Mod. Phys. Lett. A 17, 2453 (2002)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Gönül B., Gönül B., Tutcu D., O.: Supersymmetric approach to exactly solvable systems with position-dependent effective mass. Mod. Phys. Lett. A 17, 2057 (2002)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Bagchi B., Gorain P., Quesne C., Roychoudhury R.: A general scheme for the effective-mass Schrödinger equation and the generation of the associated potentials. Mod. Phys. Lett. A 19, 2765 (2004)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Quesne C., Tkachuk V.M.: Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem. J. Phys. A 37, 4267 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Quesne C.: First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Ann. Phys. N.Y. 321, 1221 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Panella O., Biondini S., Arda A.: New exact solution of the one-dimensional Dirac equation for the Woods-Saxon potential within the effective mass case. J. Phys. A Math. Theor. 43, 325302 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Alhaidari A.D.: Relativistic extension of the complex scaling method. Phys. Rev. A 75, 042707 (2007) (arXiv:quant-ph/0703013)ADSCrossRefGoogle Scholar
  20. 20.
    Alhaidari A.D., Bahlouli H., Al Hasan A., Abdelmonem M.S.: Relativistic scattering with a spatially dependent effective mass in the Dirac equation. Phys. Rev. A 75, 062711 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Alhaidari A.: Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 72 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    de Souza Dutra A., Jia C.-S.: Classes of exact Klein-Gordon equations with spatially dependent masses: Regularizing the one-dimensional inversely linear potential. Phys. Lett. 352, 484 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Vakarchuk I.O.: The Kepler problem in Dirac theory for a particle with positiondependent mass. J. Phy. A Math. Gen. 38, 4727 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Ikhadair S.M., Sever R.: Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential. Appl. Math. Comput. 216, 911 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jia C.-S., Chen T., Cui L.-G.: Approximate analytical solutions of the Dirac equation with the generalized Pöschl-Teller potential including the pseudo-centrifugal term. Phys. Lett. A 373, 1621 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Jia C.-S., de Souza Dutra A.: Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys. 323, 566 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Dekar L., Chetouani L., Hammann T.F.: An exactly soluble Schrödinger equation with smooth position-dependent mass. J. Math. Phys. 39, 2551 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Peng X.-L., Liu J.-Y., Jia C.-S.: Approximation solution of the Dirac equation with position-dependent mass for the generalized Hulthén potential. Phys. Lett. A 352, 478 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Agboola, D.: Dirac-Hulthen Problem with Position-dependent Mass in D-dimensions. Preprint math-ph/arxiv: 1011.2368v1Google Scholar
  30. 30.
    Al-Jaber S.M.: Hydrogen Atom in N Dimensions. Int. J. Theor. Phys. 37, 1289 (1998)zbMATHCrossRefGoogle Scholar
  31. 31.
    Oyewumi K.J., Akinpelu F.O., Agboola A.D.: Exactly Complete Solutions of the Pseudoharmonic Potential in N-Dimensions. Int. J. Theor. Phys. 47, 1039 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Agboola D.: The Hulthén potential in D-dimensions. Phys. Scr. 80, 065304 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Agboola D.: Solutions to the Modified Pöschl-Teller Potential in D-Dimensions. Chin. Phys. Lett. 27, 040301 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Agboola D.: Comment on ’The Klein-Gordon equation with a generalized Hulthén potential in D dimensions’. Phys. Scr. 81, 067001 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Saad N.: The Klein-Gordon equation with a generalized Hulthén potential in D-dimensions. Phys. Scr. 76, 623 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Saad N., Hall R.L., Ciftci H.: The Klein-Gordon equation with the Kratzer potential in d dimensions. Cent. Eur. J Phys. 6, 717 (2008)CrossRefGoogle Scholar
  37. 37.
    Ikhadair S.M., Sever R.: Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular Momentum. J. Math. Chem. 42, 461 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ciftci H., Hall R.L., Saad N.: Iterative solutions to the Dirac equation. Phys. Rev. A 72, 022101 (2005)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Hall R.L.: Relativistic comparison theorems. Phys. Rev. A 81, 052101 (2010)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Dong S.H.: The Dirac equation with a Coulomb potential in D dimensions. J. Phys. A Math. Gen. 36, 4977 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Hamzavi M., Rajabi A.A.: Hassanabadi.: Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys. Lett. A 374, 42 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rosen N., Morse R.M.: On the Vibrations of Polyatomic Molecules. Phys. Rev. 42, 210 (1932)ADSCrossRefGoogle Scholar
  43. 43.
    Manning M.F., Rosen N.: A potential function for the vibrations of the diatomic molecules. Phys. Rev. 44, 953 (1933)Google Scholar
  44. 44.
    Ciftci H., Hall R.L., Saad N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A 36, 11807 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Ciftci H., Hall R.L., Saad N.: Construction of exact solutions to eigenvalue problems by the asymptotic iteration method. J. Phys. A 38, 1147 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Saad N., Hall R.L., Ciftci H.: Criterion for polynomial solutions to a class of linear differential equations of second order. J. Phys. A 39, 13445 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Greiner W.: Relativistic Quantum Mechanics. Springer, Berlin (1981)Google Scholar
  48. 48.
    Dong S.H., Garcia-Ravelo J.: Exact solutions of the s-wave Schrödinger equation with Manning-Rosen potential. Phys. Scr. 75, 307 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Qiang W.-C., Dong S.-H.: Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term. Phys. Lett. A 368, 13 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Szego G.: Orthogonal Polynomials. American Mathematical Society, New York (1939)Google Scholar
  51. 51.
    Arfken G.B., Weber H.J.: Mathematical Methods for Physicists. Academic Press, San Diego (1995)Google Scholar
  52. 52.
    Yasuk F., Bahar M.K.: Approximate solutions of the Dirac equation with position-dependent mass for the Hulthén potential by the asymptotic iteration method. Phys. Scr. 85, 45004 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PhysicsErciyes UniversityKayseriTurkey
  2. 2.Department of PhysicsKaramanoglu Mehmetbey UniversityKaramanTurkey

Personalised recommendations