Few-Body Systems

, Volume 54, Issue 5–6, pp 779–782 | Cite as

AEGIS at CERN: Measuring Antihydrogen Fall

  • Marco G. Giammarchi
  • AEGIS Collaboration


The main goal of the AEGIS experiment at the CERN Antiproton Decelerator is testing fundamental laws such as the weak equivalence principle (WEP) and the CPT symmetry. In the first phase of AEGIS, a beam of antihydrogen will be formed whose fall in the gravitational field is measured in a Moirè deflectometer; this will constitute the first test of the WEP with antimatter.


Rydberg State Antihydrogen Gravity Measurement Positronium Formation Antihydrogen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kellerbauer A. et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instr. Methods B 266, 351 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Mavromatos N.E.: CPT violation: theory and phenomenology. In: Hirtl, A., Marton, J., Widmann, E., Zmeskal, J. (eds) International Conference on Exotic Atoms and Related Topics, Austrian Academy of Sciences, Vienna (2006)Google Scholar
  3. 3.
    Kosteleckỳ, V.A., Russell, N.: Data tables for Lorentz and CPT violation. arXiv:0801.0287v3 (2010)Google Scholar
  4. 4.
    Schlamminger S. et al.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Will J.G. et al.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Warring U. et al.: High-resolution laser spectroscopy on the negative osmium ion. Phys. Rev. Lett. 102, 043001 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Lizkay L. et al.: Positronium reemission yield from mesostructured silica films. Appl. Phys. Lett. 92, 063114 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Mariazzi S. et al.: Positronium cooling into nanopores and nanochannels by phonon scattering. Phys. Rev. B 68, 085428 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Mariazzi S. et al.: Positronium cooling and emission in vacuum from nano-channels at cryogenic temperature. Phys Rev. Lett. 104, 243401 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Ferragut R. et al.: Antihydrogen physics: gravitation and spectroscopy in Aegis. J. Phys. Conf. Ser. 225, 012007 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Castelli F. et al.: Efficient positronium laser excitation for antihydrogen production in a megnetic field. Phys. Rev. A 78, 052512 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Cialdi S. et al.: Efficient two-step positronium laser excitation to Rydberg levels. Nucl. Instr. Methods B 269, 1527 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Vliegen E. et al.: Stark deceleration and trapping of hydrogen Rydberg atoms. Phys. Rev. A 76, 023405 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Oberthaler M.K. et al.: Inertial sensing with classical atomic beams. Phys. Rev. A 54, 3165 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Kafri O.: Noncoherent method for mapping phase objects. Opt. Lett. 5, 555 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Infn MilanoMilanItaly

Personalised recommendations