Few-Body Systems

, Volume 54, Issue 1–4, pp 25–30 | Cite as

Nuclear Reactions in Micro/Nano-Scale Metal Particles

  • Y. E. KimEmail author


Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose–Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose–Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen–nickel system.


Einstein Condensation Coulomb Barrier Harmonic Trap National Ignition Facility Charged Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, Y.E.: Theory of Bose–Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale metal grains and particles. Naturwissenschaften 96, 803 (2009) and references thereinGoogle Scholar
  2. 2.
    Kim Y.E.: Bose–Einstein condensate theory of deuteron fusion in metal. J. Condens. Matter Nucl. Sci. 4, 188 (2010)Google Scholar
  3. 3.
    Kim Y.E.: Theoretical interpretation of anomalous tritium and neutron productions during Pd/D co-deposition experiments. Eur. Phys. J. Appl. Phys. 52, 31101 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Kim, Y.E., Zubarev, A. L.: Mixtures of charged bosons confined in harmonic traps and Bose–Einstein condensation mechanism for low energy nuclear reactions and transmutation processes in condensed matter. Condensed Matter Nuclear Science. In: Proceedings of the 11th International conference on Cold Fusion (ICCF-11), pp. 711–717. World Scientific Publishing Co., Marseilles, France, 31 October–5 November 2006Google Scholar
  5. 5.
    Fleischmann, M., Pons, M.: Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. 261, 301 (1989); Errata, J. Electroanal. Chem. 263, 187 (1989)Google Scholar
  6. 6.
    Hagelstein, P.L., et al.: New physical effects in metal deuterides. Proceedings of ICCF-11, Marseille, France, Condensed Matter Nuclear Science, pp. 23-59, World Scientific Publishing Co., Singapore (2006), and references thereinGoogle Scholar
  7. 7.
    Coehn A.: Proof of the existence of protons in metals (with discussion). Z. Electrochem. 35, 676–680 (1929)Google Scholar
  8. 8.
    Coehn A., Specht W.: Ueber die beteiligung von protonen an der elektrizitaetsleitung in metallen (Role of protons in electric conductivity of metals). Z. Phys. 83, 1–31 (1930)ADSGoogle Scholar
  9. 9.
    Bartolomeo C. et al.: Alfred Coehn and after: the α, β, γ of the palladium–hydrogen system. Trans. Fusion Technol. 26, 23 (1994)Google Scholar
  10. 10.
    Isenberg I.: The ionization of hydrogen in metals. Phys. Rev. 79, 736 (1950)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Duhm B.: Diffusion of hydrogen in palladium. Z. Phys. 94, 435–456 (1935)ADSGoogle Scholar
  12. 12.
    Barer Q.M.: Diffusion in and through solids. Cambridge University Press, New York (1941)Google Scholar
  13. 13.
    Macheche J.F., Rat J.-C., Herold A.: Study of hydrogen–metal systems: potential induced by the diffusion of hydrogen in palladium. J. Chim. Phys. Phys. Chim. Biol. 73, 983–987 (1976)Google Scholar
  14. 14.
    Lewis, F.A.: Palladium–hydrogen System 2. Platin. Met. Rev. 26, 20–27, 70–78, 121–128 (1982)Google Scholar
  15. 15.
    Fukai Y.: The Metal–Hydrogen System, 2nd edn. Springer, Berlin (2005)Google Scholar
  16. 16.
    Kim Y.E., Zubarev A.L.: Ground state of charged bosons confined in a harmonic trap. Phys. Rev. A 64, 013603-1 (2001)ADSGoogle Scholar
  17. 17.
    Kim Y.E., Zubarev A.L.: Equivalent linear two-body method for Bose–Einstein condensates in time-dependent harmonic traps. Phys. Rev. A 66, 053602-1 (2002)ADSGoogle Scholar
  18. 18.
    Kim Y.E., Zubarev A.L.: Ultra low-energy nuclear fusion of Bose nuclei in nano-scale ion traps. Ital. Phys. Soc. Proc. 70, 375 (2000)Google Scholar
  19. 19.
    Kim Y.E. et al.: Optical theorem formulation of low-energy nuclear reactions. Phys. Rev. C 55, 801 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Kim Y.E., Zubarev A.L.: Nuclear fusion for Bose nuclei confined in ion traps. Fusion Technol. 37, 151 (2000)Google Scholar
  21. 21.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, Sect. 62, Chap. XI, 2nd edn. Clarendon Press, Oxford (1935)Google Scholar
  22. 22.
    Bogolubov N.: On the theory of superfluidity. J. Phys. 11, 23–29 (1966)Google Scholar
  23. 23.
    Hagelstein P.L.: Constraints on energetic particles in the Fleischmann-Pons experiment. Naturwissenschaften 96, 345 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    National Ignition Facility Project. (2011). Accessed 12 Aug 2011
  25. 25.
    Focardi, S., et al.: Large excess heat production in Ni-H systems. Il Nuovo Cimento 111, 1234–1242 (1998) and references thereinGoogle Scholar
  26. 26.
    Campari, E., et al.: Ni-H systems. Italian Physical Society Confernce Proceedings, vol. 70, pp. 69–74. “ICCF” SIF, Bologna (2000) and references thereinGoogle Scholar
  27. 27.
    Rossi, A.: Method and apparatus for carrying out nickel and hydrogen exothermal reaction. United States Patent Application Publication (Pub. No.: US 2011/0005506 A1, Pub. Date: Jan. 13, 2011).
  28. 28.
    Focardi S., Rossi, A.: A new energy source from nuclear fusion, March 22, 2010., February 2010
  29. 29.
    Essen H., Kullander S.: Experimental test of a mini-Rossi device at the Leonardocorp. Bologna, 29 March 2011, a travel report, April 3, 2011.
  30. 30.
    Reactions (ii) were suggested by T. E. Ward, private communication, May 11, 2011Google Scholar
  31. 31.
    Kim, Y.E.: Generalized theory of Bose–Einstein condensation nuclear fusion for hydrogen–metal system. Purdue Nuclear and Many Body Theory Group (PNMBTG) Preprint PNMBTG-6-2011 (June 2011).

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PhysicsPurdue UniversityWest LafayetteUSA

Personalised recommendations