Abstract
We overview baryons in a string theoretical holographic QCD. In the large N c limit, the baryon can be viewed in two different ways. The first is a holographic lift of Skyrmion, except that not only pions but also an infinite number of spin 1 mesons are used to construct the solitonic baryon. This approach has been pursued to give an infinitely predictive model of meson–baryon dynamics. After a brief review, we comment on the alternative picture where the baryon is viewed as wrapped D-branes, which leads to a quantum mechanical description involving matrices. The two approaches give surprisingly similar answers for some quantities, such as hadronic size of baryons and repulsive cores, even though they represent two very different approximations.
Keywords
Soliton Gauge Theory Pion Decay Constant Repulsive Core Simons TermPreview
Unable to display preview. Download preview PDF.
References
- 1.Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys 2, 231 (1998) [arXiv:hep-th/9711200]MathSciNetADSzbMATHGoogle Scholar
- 2.Gubser S.S., Klebanov I.R., Polyakov A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109]MathSciNetADSCrossRefGoogle Scholar
- 3.Witten E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys 2, 253 (1998) [arXiv:hep-th/9802150]MathSciNetADSzbMATHGoogle Scholar
- 4.’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)MathSciNetADSCrossRefGoogle Scholar
- 5.Witten E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131]MathSciNetzbMATHGoogle Scholar
- 6.Sakai T., Sugimoto S.: Low energy hadron physics in holographic QCD. Prog. Theor. Phys 113, 843 (2005) [arXiv:hep-th/0412141]ADSzbMATHCrossRefGoogle Scholar
- 7.Csaki C., Ooguri H., Oz Y., Terning J.: Glueball mass spectrum from supergravity. JHEP 9901, 017 (1999) [arXiv:hep-th/9806021]MathSciNetADSCrossRefGoogle Scholar
- 8.Brower R.C., Mathur S.D., Tan C.I.: Glueball spectrum for QCD from AdS supergravity duality. Nucl. Phys. B 587, 249 (2000) [arXiv:hep-th/0003115]MathSciNetADSzbMATHCrossRefGoogle Scholar
- 9.de Mello Koch, R., Jevicki, A., Mihailescu, M., Nunes, J.P.: Evaluation Of glueball masses from supergravity. Phys. Rev. D 58, 105009 (1998) [arXiv:hep-th/9806125]Google Scholar
- 10.Hong, D.K., Rho, M., Yee, H.U., Yi, P.: Chiral dynamics of baryons from string theory. Phys. Rev. D 76, 061901 (2007) [arXiv:hep-th/0701276]Google Scholar
- 11.Hong, D.K., Rho, M., Yee, H.U., Yi, P.: Dynamics of baryons from string theory and vector dominance. JHEP 0709, 063 (2007) [arXiv:0705.2632 (hep-th)]Google Scholar
- 12.Park J., Yi P.: A Holographic QCD and excited baryons from string theory. JHEP 0806, 011 (2008) [arXiv:0804.2926 (hep-th)]MathSciNetADSCrossRefGoogle Scholar
- 13.Hata, H., Sakai,T., Sugimoto, S., Yamato, S.: Baryons from instantons in holographic QCD [arXiv:hep-th/0701280]Google Scholar
- 14.Adkins G.S., Nappi C.R., Witten E.: Static properties of nucleons in the Skyrme model. Nucl. Phys. B 228, 552 (1983)ADSCrossRefGoogle Scholar
- 15.Sakai, T., Sugimoto, S.: More on a holographic dual of QCD. Prog. Theor. Phys 114, 1083 (2006) [arXiv:hep-th/0507073]Google Scholar
- 16.Skyrme T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
- 17.Kim, Y., Lee, S., Yi, P.: Holographic deuteron and nucleon–nucleon potential. (2009) [arXiv:0902.4048 (hep-th)]Google Scholar
- 18.Machaleidt, R.: In: Advances in Nuclear Physics, vol. 19 Negele, J.W., Vogt, E. (Eds.) Advances in Nuclear Physics, vol. 19. Plenum, New York (1986)Google Scholar
- 19.Höhler G., Pietarinen E.: The ρ NN vertex in vector dominance model. Nucl. Phys. B 95, 210 (1975)ADSCrossRefGoogle Scholar
- 20.Stoks, V.G.J., Klomp, R.A.M., Terheggen, C.P.F., de Swart, J.J.: Construction of high quality N N potential models. Phys. Rev. C 49, 2950 (1994) [arXiv:nucl-th/9406039]Google Scholar
- 21.Machleidt, R.: The high-precision, charge-dependent Bonn nucleon–nucleon potential (CD-Bonn). Phys. Rev. C 63, 024001 (2001) [arXiv:nucl-th/0006014]Google Scholar
- 22.Fujiwara T. et al.: An effective Lagrangian for pions, ρ mesons and skyrmions. Theor. Phys. 74, 128 (1985)ADSCrossRefGoogle Scholar
- 23.Meissner U.-G., Kaiser N., Wirzba A., Weise W.: Skyrmions with ρ and ω mesons as dynamical gauge bosons. Phys. Rev. Lett. 57, 1676 (1986)ADSCrossRefGoogle Scholar
- 24.Meissner U.G., Zahed I.: Skyrmions in the presence of vector mesons. Phys. Rev. Lett. 56, 1035 (1986)ADSCrossRefGoogle Scholar
- 25.Gervais J.-L., Sakita B.: Large N QCD baryon dynamics: exact results from its relation to the static strong coupling theory. Phys. Rev. Lett. 52, 87 (194))CrossRefGoogle Scholar
- 26.Dashen, R.F., Jenkins, E.E., Manohar, A.V.: The 1/N(c) expansion for baryons. Phys. Rev. D 49, 4713 (1994) [hep-ph/9310379]Google Scholar
- 27.Hosaka A., Walet N.R.: Algebraic method for large-N(c) QCD. Aust. J. Phys. 50, 211–220 (1997)ADSzbMATHGoogle Scholar
- 28.Yi, P.: Holographic baryons. (2009) arXiv:0902.4515 [hep-th]Google Scholar
- 29.Witten, E.: Baryons and branes in anti de Sitter space. JHEP 9807, 006 (1998) [arXiv:hep-th/9805112]Google Scholar
- 30.Hashimoto, K., Iizuka, N., Yi, P.: A matrix model for baryons and nuclear forces. JHEP 1010, 003 (2010) [arXiv:1003.4988 (hep-th)]Google Scholar
- 31.Douglas, M.R.: Branes within branes (1995) [hep-th/9512077]Google Scholar
- 32.Hashimoto K., Iizuka N.: Nucleon statistics in holographic QCD: Aharonov–Bohm effect in a matrix model. Phys. Rev. D 82, 105023 (2010) [arXiv:1006.3612 (hep-th)]ADSCrossRefGoogle Scholar
- 33.Hashimoto, K., Iizuka, N.: Three-body nuclear forces from a matrix model. JHEP 1011 058 (2010) [arXiv:1005.4412 (hep-th)]Google Scholar