Advertisement

Few-Body Systems

, Volume 54, Issue 1–4, pp 77–83 | Cite as

Two Approaches to Holographic Baryons/Nuclei

  • Piljin YiEmail author
Article
  • 63 Downloads

Abstract

We overview baryons in a string theoretical holographic QCD. In the large N c limit, the baryon can be viewed in two different ways. The first is a holographic lift of Skyrmion, except that not only pions but also an infinite number of spin 1 mesons are used to construct the solitonic baryon. This approach has been pursued to give an infinitely predictive model of meson–baryon dynamics. After a brief review, we comment on the alternative picture where the baryon is viewed as wrapped D-branes, which leads to a quantum mechanical description involving matrices. The two approaches give surprisingly similar answers for some quantities, such as hadronic size of baryons and repulsive cores, even though they represent two very different approximations.

Keywords

Soliton Gauge Theory Pion Decay Constant Repulsive Core Simons Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys 2, 231 (1998) [arXiv:hep-th/9711200]MathSciNetADSzbMATHGoogle Scholar
  2. 2.
    Gubser S.S., Klebanov I.R., Polyakov A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109]MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Witten E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys 2, 253 (1998) [arXiv:hep-th/9802150]MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Witten E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131]MathSciNetzbMATHGoogle Scholar
  6. 6.
    Sakai T., Sugimoto S.: Low energy hadron physics in holographic QCD. Prog. Theor. Phys 113, 843 (2005) [arXiv:hep-th/0412141]ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Csaki C., Ooguri H., Oz Y., Terning J.: Glueball mass spectrum from supergravity. JHEP 9901, 017 (1999) [arXiv:hep-th/9806021]MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Brower R.C., Mathur S.D., Tan C.I.: Glueball spectrum for QCD from AdS supergravity duality. Nucl. Phys. B 587, 249 (2000) [arXiv:hep-th/0003115]MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    de Mello Koch, R., Jevicki, A., Mihailescu, M., Nunes, J.P.: Evaluation Of glueball masses from supergravity. Phys. Rev. D 58, 105009 (1998) [arXiv:hep-th/9806125]Google Scholar
  10. 10.
    Hong, D.K., Rho, M., Yee, H.U., Yi, P.: Chiral dynamics of baryons from string theory. Phys. Rev. D 76, 061901 (2007) [arXiv:hep-th/0701276]Google Scholar
  11. 11.
    Hong, D.K., Rho, M., Yee, H.U., Yi, P.: Dynamics of baryons from string theory and vector dominance. JHEP 0709, 063 (2007) [arXiv:0705.2632 (hep-th)]Google Scholar
  12. 12.
    Park J., Yi P.: A Holographic QCD and excited baryons from string theory. JHEP 0806, 011 (2008) [arXiv:0804.2926 (hep-th)]MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Hata, H., Sakai,T., Sugimoto, S., Yamato, S.: Baryons from instantons in holographic QCD [arXiv:hep-th/0701280]Google Scholar
  14. 14.
    Adkins G.S., Nappi C.R., Witten E.: Static properties of nucleons in the Skyrme model. Nucl. Phys. B 228, 552 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    Sakai, T., Sugimoto, S.: More on a holographic dual of QCD. Prog. Theor. Phys 114, 1083 (2006) [arXiv:hep-th/0507073]Google Scholar
  16. 16.
    Skyrme T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kim, Y., Lee, S., Yi, P.: Holographic deuteron and nucleon–nucleon potential. (2009) [arXiv:0902.4048 (hep-th)]Google Scholar
  18. 18.
    Machaleidt, R.: In: Advances in Nuclear Physics, vol. 19 Negele, J.W., Vogt, E. (Eds.) Advances in Nuclear Physics, vol. 19. Plenum, New York (1986)Google Scholar
  19. 19.
    Höhler G., Pietarinen E.: The ρ NN vertex in vector dominance model. Nucl. Phys. B 95, 210 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    Stoks, V.G.J., Klomp, R.A.M., Terheggen, C.P.F., de Swart, J.J.: Construction of high quality N N potential models. Phys. Rev. C 49, 2950 (1994) [arXiv:nucl-th/9406039]Google Scholar
  21. 21.
    Machleidt, R.: The high-precision, charge-dependent Bonn nucleon–nucleon potential (CD-Bonn). Phys. Rev. C 63, 024001 (2001) [arXiv:nucl-th/0006014]Google Scholar
  22. 22.
    Fujiwara T. et al.: An effective Lagrangian for pions, ρ mesons and skyrmions. Theor. Phys. 74, 128 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    Meissner U.-G., Kaiser N., Wirzba A., Weise W.: Skyrmions with ρ and ω mesons as dynamical gauge bosons. Phys. Rev. Lett. 57, 1676 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Meissner U.G., Zahed I.: Skyrmions in the presence of vector mesons. Phys. Rev. Lett. 56, 1035 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    Gervais J.-L., Sakita B.: Large N QCD baryon dynamics: exact results from its relation to the static strong coupling theory. Phys. Rev. Lett. 52, 87 (194))CrossRefGoogle Scholar
  26. 26.
    Dashen, R.F., Jenkins, E.E., Manohar, A.V.: The 1/N(c) expansion for baryons. Phys. Rev. D 49, 4713 (1994) [hep-ph/9310379]Google Scholar
  27. 27.
    Hosaka A., Walet N.R.: Algebraic method for large-N(c) QCD. Aust. J. Phys. 50, 211–220 (1997)ADSzbMATHGoogle Scholar
  28. 28.
    Yi, P.: Holographic baryons. (2009) arXiv:0902.4515 [hep-th]Google Scholar
  29. 29.
    Witten, E.: Baryons and branes in anti de Sitter space. JHEP 9807, 006 (1998) [arXiv:hep-th/9805112]Google Scholar
  30. 30.
    Hashimoto, K., Iizuka, N., Yi, P.: A matrix model for baryons and nuclear forces. JHEP 1010, 003 (2010) [arXiv:1003.4988 (hep-th)]Google Scholar
  31. 31.
    Douglas, M.R.: Branes within branes (1995) [hep-th/9512077]Google Scholar
  32. 32.
    Hashimoto K., Iizuka N.: Nucleon statistics in holographic QCD: Aharonov–Bohm effect in a matrix model. Phys. Rev. D 82, 105023 (2010) [arXiv:1006.3612 (hep-th)]ADSCrossRefGoogle Scholar
  33. 33.
    Hashimoto, K., Iizuka, N.: Three-body nuclear forces from a matrix model. JHEP 1011 058 (2010) [arXiv:1005.4412 (hep-th)]Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations