Few-Body Systems

, Volume 54, Issue 1–4, pp 221–224 | Cite as

Scattering of a Spin-\({\frac{1}{2}}\) Particle Off a Spin-0 Target in a Simple Three-Dimensional Basis

  • Imam FachruddinEmail author
  • Agus Salam


Scattering of a spin-\({\frac{1}{2}}\) particle off a spin-0 target is formulated based on a simple three-dimensional momentum-spin basis. The azimuthal behaviour of both the potential and the T-matrix elements leads to a set of integral equations for the T-matrix elements in two variables only, namely the momentum’s magnitude and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved by a factor of one half. A complete list of the spin observables in terms of the two-dimensional T-matrix elements is presented.


Symmetry Relation Spin Observable Nucleon Scattering Partial Wave Decomposition Pauli Spin Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glöckle W. et al.: The three-nucleon continuum: achievements, challenges and applications. Phys. Rep. 274, 107 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Elster Ch., Thomas J.H., Glöckle W.: Two-body T-matrices without angular-momentum decomposition. energy and momentum dependences. Few-Body Syst. 24, 55 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Liu H., Elster Ch., Glöckle W.: Three-body scattering at intermediate energies. Phys. Rev. C 72, 054003 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Holz J., Glöckle W.: Nucleon–nucleon scattering in a time-dependent treatment. Phys. Rev. C 37, 1386 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Rice R.A., Kim Y.E.: Formulation of few-body equations without partial waves. Few-Body Syst. 14, 127 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Fachruddin I., Elster Ch., Glöckle W.: Nucleon–nucleon scattering in a three dimensional approach. Phys. Rev. C 62, 044002 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Golak J. et al.: Two-nucleon systems in three dimensions. Phys. Rev. C 81, 034006 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Glöckle W. et al.: 3N scattering in a three-dimensional operator formulation. Eur. Phys. J. A 43, 339 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Abdulrahman I., Fachruddin I.: A formulation without partial wave decomposition for scattering of spin-\({\frac{1}{2}}\) and spin-0 particles. Mod. Phys. Lett. A 24, 843 (2009)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departemen FisikaUniversitas IndonesiaDepokIndonesia

Personalised recommendations