Advertisement

Few-Body Systems

, Volume 52, Issue 3–4, pp 195–202 | Cite as

The AdS/CFT Correspondence and Holographic QCD

  • Joshua ErlichEmail author
Article

Abstract

Holographic QCD is an extra-dimensional approach to modeling QCD resonances and their interactions. Holographic models encode information about chiral symmetry breaking, Weinberg sum rules, vector meson dominance, and other phenomenological features of QCD. There are two complementary approaches to holographic model building: a top–down approach which begins with string-theory brane configurations, and a bottom–up approach which is more phenomenological. In this talk I will describe the AdS/CFT correspondence, which motivates Holographic QCD, and the techniques used to build holographic models of QCD and to calculate observables in those models. I will also discuss an intriguing lightcone approach to Holographic QCD discovered by Brodsky and De Teramond.

Keywords

Gauge Theory Chiral Symmetry Chiral Symmetry Breaking Holographic Model Chiral Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)] arXiv:hep-th/9711200Google Scholar
  2. 2.
    Bando M., Kugo T., Uehara S., Yamawaki K., Yanagida T.: Is Rho Meson A Dynamical Gauge Boson Of Hidden Local Symmetry?. Phys. Rev. Lett. 54, 1215 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    Witten E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998) arXiv:hep-th/9802150MathSciNetzbMATHGoogle Scholar
  4. 4.
    Gubser S.S., Klebanov I.R., Polyakov A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998) arXiv:hep-th/9802109MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Polchinski, J., Strassler, M.J.: The string dual of a confining four-dimensional gauge theory. arXiv:hep-th/0003136Google Scholar
  6. 6.
    Klebanov I.R., Strassler M.J.: Supergravity and a confining gauge theory: Duality cascades and chiSB-resolution of naked singularities. JHEP 0008, 052 (2000) arXiv:hep-th/0007191MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Kruczenski M., Mateos D., Myers R.C., Winters D.J.: Towards a holographic dual of large-N(c) QCD. JHEP 0405, 041 (2004) arXiv:hep-th/0311270ADSCrossRefGoogle Scholar
  8. 8.
    Sakai T., Sugimoto S.: Low energy hadron physics in holographic QCD. Prog. Theor. Phys. 113, 843 (2005) arXiv:hep-th/0412141ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Sakai T., Sugimoto S.: More on a holographic dual of QCD. Prog. Theor. Phys. 114, 1083 (2005) arXiv:hep-th/0507073ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Witten E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131MathSciNetzbMATHGoogle Scholar
  11. 11.
    Erlich J., Katz E., Son D.T., Stephanov M.A.: QCD and a holographic model of hadrons. Phys. Rev. Lett. 95, 261602 (2005) arXiv:hep-ph/0501128ADSCrossRefGoogle Scholar
  12. 12.
    Da Rold L., Pomarol A.: Chiral symmetry breaking from five dimensional spaces. Nucl. Phys. B 721, 79 (2005) arXiv:hep-ph/0501218ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Karch A., Katz E., Son D.T., Stephanov M.A.: Linear Confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006) arXiv:hep-ph/0602229ADSCrossRefGoogle Scholar
  14. 14.
    Brodsky S.J., Shrock R.: Maximum Wavelength of confined quarks and gluons and properties of quantum chromodynamics. Phys. Lett. B 666, 95 (2008) arXiv:0806.1535 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    Deur A., Burkert V., Chen J.P., Korsch W.: Determination of the effective strong coupling constant \({{\alpha_{s,g_1}( Q^2)}}\) from CLAS spin structure function data. Phys. Lett. B 665, 349 (2008) arXiv:0803.4119 [hep-ph]ADSCrossRefGoogle Scholar
  16. 16.
    Breitenlohner P., Freedman D.Z.: Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity. Phys. Lett. B 115, 197 (1982)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Cherman A., Cohen T.D., Werbos E.S.: The chiral condensate in holographic models of QCD. Phys. Rev. C 79, 045203 (2009) arXiv:0804.1096 [hep-ph]ADSCrossRefGoogle Scholar
  18. 18.
    Katz E., Lewandowski A., Schwartz M.D.: Tensor mesons in AdS/QCD. Phys. Rev. D 74, 086004 (2006) arXiv:hep-ph/0510388ADSCrossRefGoogle Scholar
  19. 19.
    Abidin Z., Carlson C.E.: Strange hadrons and kaon-to-pion transition form factors from holography. Phys. Rev. D 80, 115010 (2009) arXiv:0908.2452 [hep-ph]ADSCrossRefGoogle Scholar
  20. 20.
    Hong S., Yoon S., Strassler M.J.: On the couplings of vector mesons in AdS/QCD. JHEP 0604, 003 (2006) hep-th/0409118ADSCrossRefGoogle Scholar
  21. 21.
    Shifman, M.: Highly excited hadrons in QCD and beyond. arXiv:hep-ph/0507246Google Scholar
  22. 22.
    Hirn J., Sanz V.: (Not) summing over Kaluza–Kleins. Phys. Rev. D 76, 044022 (2007) arXiv:hep-ph/0702005MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Kwee H.J., Lebed R.F.: Pion form factors in holographic QCD. JHEP 0801, 027 (2008) arXiv:0708.4054 [hep-ph]ADSCrossRefGoogle Scholar
  24. 24.
    Grigoryan H.R., Radyushkin A.V.: Form factors and wave functions of vector mesons in holographic QCD. Phys. Lett. B 650, 421 (2007) arXiv:hep-ph/0703069ADSCrossRefGoogle Scholar
  25. 25.
    Abidin, Z., Carlson, C.E.: Hadronic momentum densities in the transverse plane. Phys. Rev. D 78, 071502 (2008). arXiv:0808.3097 [hep-ph]Google Scholar
  26. 26.
    Erlich J., Westenberger C.: Phys. Rev. D 79, 066014 (2009)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Nawa K., Suganuma H., Kojo T.: Baryons in Holographic QCD. Phys. Rev. D 75, 086003 (2007) arXiv:hep-th/0612187ADSCrossRefGoogle Scholar
  28. 28.
    Pomarol A., Wulzer A.: Baryon physics in holographic QCD. Nucl. Phys. B 809, 347 (2009) arXiv:0807.0316 [hep-ph]ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Nawa K., Suganuma H., Kojo T.: Brane-induced Skyrmion on S 3: baryonic matter in holographic QCD. Phys. Rev. D 79, 026005 (2009) arXiv:0810.1005 [hep-th]ADSCrossRefGoogle Scholar
  30. 30.
    de Teramond, G.F., Brodsky, S.J.: Baryonic states in QCD from gauge/string duality at large N(c). arXiv:hep-th/0409074Google Scholar
  31. 31.
    Hong D.K., Inami T., Yee H.U.: Baryons in AdS/QCD. Phys. Lett. B 646, 165 (2007) arXiv:hep-ph/0609270ADSCrossRefGoogle Scholar
  32. 32.
    Brodsky S.J., de Teramond G.F.: Hadronic spectra and light-front wavefunctions in holographic QCD. Phys. Rev. Lett. 96, 201601 (2006) arXiv:hep-ph/0602252ADSCrossRefGoogle Scholar
  33. 33.
    Kovtun P., Son D.T., Starinets A.O.: Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005) arXiv:hep-th/0405231ADSCrossRefGoogle Scholar
  34. 34.
    Kovtun, P., Ritz, A.: Universal conductivity and central charges. arXiv:0806.0110 [hep-th]Google Scholar
  35. 35.
    Hirn J., Sanz V.: A negative S parameter from holographic technicolor. Phys. Rev. Lett. 97, 121803 (2006) arXiv:hep-ph/0606086ADSCrossRefGoogle Scholar
  36. 36.
    Carone C.D., Erlich J., Tan J.A.: Holographic bosonic technicolor. Phys. Rev. D 75, 075005 (2007) arXiv:hep-ph/0612242ADSCrossRefGoogle Scholar
  37. 37.
    Carone C.D., Erlich J., Sher M.: Holographic electroweak symmetry breaking from D-branes. Phys. Rev. D 76, 015015 (2007) arXiv:0704.3084 [hep-th]ADSCrossRefGoogle Scholar
  38. 38.
    Hong D.K., Yee H.U.: Holographic estimate of oblique corrections for technicolor. Phys. Rev. D 74, 015011 (2006) arXiv:hep-ph/0602177ADSCrossRefGoogle Scholar
  39. 39.
    Son D.T.: Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry. Phys. Rev. D 78, 046003 (2008) arXiv:0804.3972 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Adams A., Balasubramanian K., McGreevy J.: Hot spacetimes for cold atoms. JHEP 0811, 059 (2008) arXiv:0807.1111 [hep-th]ADSCrossRefGoogle Scholar
  41. 41.
    Gubser S.S., Pufu S.S.: The gravity dual of a p-wave superconductor. JHEP 0811, 033 (2008) arXiv:0805.2960 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Roberts M.M., Hartnoll S.A.: Pseudogap and time reversal breaking in a holographic superconductor. JHEP 0808, 035 (2008) arXiv:0805.3898 [hep-th]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations