Few-Body Systems

, Volume 52, Issue 3–4, pp 375–380 | Cite as

Electromagnetic Excitation of the Baryons Within the Covariant Spectator Formalism

  • M. T. PeñaEmail author
  • G. Ramalho


We present some results on the electromagnetic structure of the Δ (1232), the N* (1535), and the Ω baryons, obtained within the Covariant Spectator framework. We discuss their connection to calculations of QCD in the lattice and the role of the meson cloud in the γ NN* (1535) transition.


Form Factor Covariant Spectator Transition Form Factor Constituent Quark Model Vector Meson Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gross F., Ramalho G., Peña M.T.: A pure S-wave covariant model for the nucleon. Phys. Rev. C 77, 015202 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Ramalho G., Peña M.T., Gross F.: A covariant model for the nucleon and the Δ. Eur. Phys. J. A 36, 329 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Ramalho G., Peña M.T., Gross F.: D-state effects in the electromagnetic N-Delta transition. Phys. Rev. D 78, 114017 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Ramalho G., Peña M.T.: A covariant model for the γ NN*(1535) transition at high momentum transfer. Phys. Rev. D 84, 039904 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Ramalho G., Tsushima K., Gross F.: A relativistic quark model for the omega-electromagnetic form factors. Phys. Rev. D 80, 033004 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Ramalho G., Peña M.T.: Extracting the omega-electric quadrupole moment from lattice QCD data. Phys. Rev. 83, 054011 (2011)ADSGoogle Scholar
  7. 7.
    Ramalho G., Peña M.T.: Valence quark contribution for the γ N → Δ quadrupole transition extracted from lattice QCD. Phys. Rev. D 80, 013008 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Aznauryan, I., Braun, V., Burkert, V., Capstick, S., Edwards, R., Cloet, I.C., Giannini, M., Lee, T.S.H., Lin, H.W., Mokeev, V., Roberts, C.D., Santopinto, E., Stoler, P., Zhao, Q., Zou, B.S.: Theory Support for the Excited Baryon Program at the Jlab 12-GeV Upgrade, Chap. III. arXiv:0907.1901 [nucl-th]Google Scholar
  9. 9.
    Lee V.D., Lee T.S.H.: Electromagnetic meson production in the nucleon resonance region. Int. J. Mod. Phys. E 13, 1035 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Julia-Diaz B., Lee T.S.H, Sato T., Smith L.C.: Extraction and interpretation of γ N → Δ form factors within a dynamical model. Phys. Rev. C 75, 015205 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Julia-Diaz B., Kamano H., Lee T.S., Matsuyama A., Sato T., Suzuki N.: Dynamical coupled-channels analysis of p(e,e’pi)N reactions. Phys. Rev. C 80, 025207 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Ramalho G., Peña M.T., Gross F.: Electromagnetic form factors of the delta with D-waves. Phys. Rev. D 81, 113011 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Ramalho G., Peña M.T., Gross F.: Electric quadrupole and magnetic octupole moments of the delta. Phys. Lett. B 678, 355–358 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Kaiser N., Siegel P.B., Weise W.: Chiral dynamics and the S11 (1535) nucleon resonance. Phys. Lett. B 362, 23 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Jido D., Doering M., Oset E.: Transition form factors of the N*(1535) as a dynamically generated resonance. Phys. Rev. C 77, 065207 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Capstick S., Keister B.D.: Baryon current matrix elements in a light front framework. Phys. Rev. D 51, 3598 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Aznauryan, I.G., et al. [CLAS Collaboration]: Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009)Google Scholar
  18. 18.
    Drechsel D., Kamalov S.S., Tiator L.: Unitary isobar model—MAID2007. Eur. Phys. J. A 34, 69 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Dalton M.M. et al.: Electroproduction of eta mesons in the S11(1535) resonance region at high momentum transfer. Phys. Rev. C 80, 015205 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Baryshevsky V.G., Shechtman A.G.: Spin oscillation and the possibility of quadrupole moment measurement for omega-hyperons moving in a crystal. Nucl. Instrum. Meth. B 83, 250 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Leinweber D.B., Draper T., Woloshyn R.M.: Decuplet baryon structure from lattice QCD. Phys. Rev. D 46, 3067 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    Aubin C., Orginos K., Pascalutsa V., Vanderhaeghen M.: Magnetic moments of delta and omega-baryons with dynamical clover fermions. Phys. Rev. D 79, 051502(R) (2009)ADSGoogle Scholar
  23. 23.
    Alexandrou C., Korzec T., Koutsou G., Negele J.W., Proestos Y.: The electromagnetic form factors of the omega in lattice QCD. Phys. Rev. D 82, 034504 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Boinepalli S., Leinweber D.B., Moran P.J., Williams A.G., Zanotti J.M., Zhang J.B.: Precision electromagnetic structure of decuplet baryons in the chiral regime. Phys. Rev. D 80, 054505 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Geng L.S., Camalich J. Martin, Vicente Vacas M.J.: Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory. Phys. Rev. D 80, 034027 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.CFTP, Instituto Superior TécnicoUniversidade Técnica de LisboaLisbonPortugal

Personalised recommendations