Advertisement

Few-Body Systems

, Volume 52, Issue 1–2, pp 11–18 | Cite as

Exact Solutions of the Klein–Gordon Equation with Position-Dependent Mass for Mixed Vector and Scalar Kink-Like Potentials

  • Chun-Sheng JiaEmail author
  • Xiao-Ping Li
  • Lie-Hui Zhang
Article

Abstract

The relativistic problem of spinless particles with position-dependent mass subject to kink-like potentials (~tanh αx) is investigated. By using the basic concepts of the supersymmetric quantum mechanics formalism and the functional analysis method, we solve exactly the position-dependent effective mass Klein–Gordon equation with the vector and scalar kink-like potential coupling, and obtain the bound state solutions in the closed form. It is found that in the presence of position-dependent mass there exists the symmetry that the discrete positive energy spectra and negative energy spectra are symmetric about zero energy for the case of a mixed vector and scalar kink-like potential coupling, and in the presence of constant mass this symmetry only appears for the cases of a pure scalar kink-like potential coupling or massless particles.

Keywords

Dirac Equation Gordon Equation Dependent Mass Pseudospin Symmetry Spinless Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Roos O.: Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    Arias de Saavedra F., Boronat F., Polls A., Fabrocini A.: Effective mass of one 4He atom in liquid 3He. Phys. Rev. B 50, 4248 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Serra L., Lipparini E.: Spin response of unpolarized quantum dots. Europhys. Lett. 40, 667 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Barranco M., Pi M., Gatica S.M., Hernandez E.S., Navarro J.: Structure and energetics of mixed 4He–3He drops. Phys. Rev. B 56, 8997 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Geller M.R., Kohn W.: Quantum mechanics of electrons in crystals with graded composition. Phys. Rev. Lett. 70, 3103 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    De Souza Dutra A., Almeida C.A.S.: Exact solvability of potentials with spatially dependent effective masses. Phys. Lett. A 275, 25 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Alhaidari A.D.: Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 72 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Vakarchuk I.O.: The Kepler problem in Dirac theory for a particle with position-dependent mass. J. Phys. A Math. Gen. 38, 4727 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Peng X.L., Liu J.Y., Jia C.S.: Approximation solution of the Dirac equation with position-dependent mass for the generalized Hulthén potential. Phys. Lett. A 352, 478 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Jia C.S., de Souza Dutra A.: Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials. J. Phys. A Math. Gen. 39, 11877 (2006)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Jia C.S., Liu J.Y., Wang P.Q., Che C.S.: Trapping neutral fermions with a PT-symmetric trigonometric potential in the presence of position-dependent mass. Phys. Lett. A 369, 274 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Jia C.S., de Souza Dutra A.: Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys. (N. Y.) 323, 566 (2008)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Jia C.S., Wang P.Q., Liu J.Y., He S.: Relativistic confinement of neutral fermions with partially exactly solvable and exactly solvable PT-symmetric potentials in the presence of position-dependent mass. Int. J. Theor. Phys. 47, 2513 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mustafa O., Mazharimousavi S.H.: (1+1)-Dirac particle with position-dependent mass in complexified Lorentz scalar interactions: effectively \({\mathcal{PT}}\) -symmetric. Int. J. Theor. Phys. 47, 1112 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mustafa O.: Energy-levels crossing and radial Dirac equation: supersymmetry and quasi-parity spectral signatures. Int. J. Theor. Phys. 47, 1300 (2008)zbMATHCrossRefGoogle Scholar
  16. 16.
    Arda A., Sever R., Tezcan C., Akçay H.: Analytical solutions to the Klein-Gordon equation with position-dependent mass for q-parameter Pöschl-Teller potential. Chin. Phys. Lett. 27, 040306 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Ikhdair S.M., Sever R.: Solutions of the spatially-dependent mass Dirac equation with the spin and pseudo-spin symmetry for the Coulomb-like potential. Appl. Math. Comput. 216, 545 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Longhi S.: Optical realization of relativistic non-Hermitian quantum mechanics. Phys. Rev. Lett. 105, 013903 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Hamzavi M., Rajabi A.A., Hassanabadi H.: Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys. Lett. A 374, 4303 (2010)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Panahi H., Bakhshi Z.: Dirac equation with position-dependent effective mass and solvable potentials in the Schrödinger equation. J. Phys. A Math. Theor. 44, 175304 (2011)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Eshghi, M., Mehraban, H.: Solution of the Dirac equation with position-dependent mass for q-parameter modified Pöschl-Teller and Coulomb-like tensor potential. Few-Body Syst. (2011). doi: 10.1007/s00601-011-0238-5
  22. 22.
    de Souza Dutra A., Jia C.S.: Classes of exact Klein–Gordon equations with spatially dependent masses: regularizing the one-dimensional inversely linear potential. Phys. Lett. 352, 484 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dai T.Q., Cheng Y.F.: Bound state solutions of the Klein-Gordon equation with position-dependent mass for the inversely linear potential. Phys. Scr. 79, 015007 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Ikhdair S.M., Sever R.: Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein-Gordon equation for the scalar and vector Hulthén potentials. Phys. Scr. 79, 035002 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Ikhdair S.M.: Exact Klein-Gordon equation with spatially dependent masses for unequal scalar-vector Coulomb-like potentials. Eur. Phys. J. A 40, 143 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Arda A., Sever R., Tezcan C.: Approximate analytical solutions of the Klein-Gordon equation for the Hulthén potential with the position-dependent mass. Phys. Scr. 79, 015006 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Arda A., Sever R.: Approximate l-state solutions to the Klein-Gordon equation for modified Woods-Saxon potential with position dependent mass. Int. J. Mod. Phys. A 24, 3985 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Arda A., Sever R., Tezcan C.: Analytical solutions to the Klein-Gordon equation with position-dependent mass for q-parameter Pöschl-Teller potential. Chin. Phys. Lett. 27, 010306 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Arda A., Sever R.: Effective-mass Klein-Gordon equation for non-PT/non-Hermitian generalized Morse potential. Phys. Scr. 82, 065007 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Hassanabadi H., Zarrinkamar S., Hamzavi M., Rajabi A.A.: Relativistic spinless bosons in exponential fields. Few-Body Syst. 51, 69 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Hassanabadi H., Rahimov H., Zarrinkamar S.: Cornell and Coulomb interactions for the D-dimensional Klein-Gordon equation. Ann. Phys. (Berlin) 523, 566 (2011)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    De Castro A.S., Hott M.: Trapping neutral fermions with kink-like potentials. Phys. Lett. A 351, 379 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    De Castro A.S.: Effects of a mixed vector-scalar kink-like potential for spinless particles in two-dimensional space-time. Int. J. Mod. Phys. A 22, 2609 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Goldstone J., Wilczek F.: Fractional quantum numbers on solitons. Phys. Rev. Lett. 47, 986 (1981)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Jackiw J., Semenoff G.: Continuum quantum field theory for a linearly conjugated diatomic polymer with fermion fractionization. Phys. Rev. Lett. 50, 439 (1983)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Niemi A.J., Semenoff G.: Fermion number fractionization in quantum field theory. Phys. Rep. 135, 99 (1986)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Jia C.S., Diao Y.F., Liu J.Y.: Bounded solutions of the Dirac equation with a PT-symmetric kink-like vector potential in two-dimensional space-time. Int. J. Theor. Phys. 47, 664 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Rosen N., Morse P.M.: On the vibrations of polyatomic molecules. Phys. Rev. 42, 210 (1932)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Nieto M.M.: Exact wave-function normalization constants for the B0z −U0−2z and Pöschl-Teller potentials. Phys. Rev. A 17, 1273 (1978)ADSCrossRefGoogle Scholar
  40. 40.
    Witten E.: Dynamical breaking of supersymmetry. Nucl. Phys. B 185, 513 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    Gendenshtein L.E.: Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. Sov. Phys. JETP Lett. 38, 356 (1983)ADSGoogle Scholar
  42. 42.
    Cooper F., Khare A., Sukhatme U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Kostelecky V.A., Nieto M.M.: Evidence for a phenomenological supersymmetry in atomic physics. Phys. Rev. Lett. 53, 2285 (1984)ADSCrossRefGoogle Scholar
  44. 44.
    Kostelecky V.A., Nieto M.M.: Evidence from alkali-metal-atom transition probabilities for a phenomenological atomic supersymmetry. Phys. Rev. A 32, 1293 (1985)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Kostelecky V.A., Nieto M.M., Truax D.R.: Supersymmetry and the relationship between the Coulomb and oscillator problems in arbitrary dimensions. Phys. Rev. D 32, 2627 (1985)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Lahiri A., Roy P.K., Bagchi B.: Supersymmetry in atomic physics and the radial problem. J. Phys. A Math. Gen. 20, 3825 (1987)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Lahiri A., Roy P.K., Bagchi B.: Supersymmetry and the three-dimensional isotropic oscillator problem. J. Phys. A Math. Gen. 20, 5403 (1987)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Chen T., Diao Y.F., Jia C.S.: Bound state solutions of the Klein-Gordon equation with the generalized Pöschl-Teller potential. Phys. Scr. 79, 065014 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Xu Y., He S., Jia C.S.: Approximate analytical solutions of the Klein-Gordon equation with the Pöschl-Teller potential including the centrifugal term. Phys. Scr. 81, 045001 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Setare M.R., Hatami O.: Algebraic approach for shape invariant potentials in Klein-Gordon equation. Int. J. Theor. Phys. 48, 2977 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Zarrinkamar S., Rajabi A.A., Hassanabadi H.: Dirac equation in the presence of Coulomb and linear terms in (1 + 1) dimensions: the supersymmetric approach. Ann. Phys. (N. Y.) 325, 1720 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Zarrinkamar S., Rajabi A.A., Hassanabadi H.: Dirac equation for the harmonic scalar and vector potentials and linear plus Coulomb-like tensor potential: the SUSY approach. Ann. Phys. (N. Y.) 325, 2522 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Zarrinkamar S., Hassanabadi H., Rajabi A.A.: Dirac equation for a Coulomb scalar, vector and tensor interaction. Int. J. Mod. Phys. A 26, 1011 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. 54.
    Zarrinkamar S., Rajabi A.A., Hassanabadi H.: Supersymmetric study of the pseudospin symmetry limit of the Dirac equation for a pseudoharmonic potential. Phys. Scr. 83, 015009 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Zarrinkamar S., Rajabi A.A., Rahimov H., Hassanabadi H.: DKP equation under a vector Hulthén-type potential: an approximate solution. Mod. Phys. Lett. A 26, 1621 (2011)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations