Few-Body Systems

, 51:219 | Cite as

Efimov Trimers in a Harmonic Potential

Open Access


We study the Efimov effect in a harmonic oscillator in the hyperspherical formulation, and show how a reduced model allows for a description that is a generalization of the Efimov effect in free space and leads to results that are easily interpreted. Three-particle states that resemble Efimov trimers for large scattering length, become more similar to independent particles in a harmonic trap when adiabatically decreasing the scattering length. In the transition region, Efimov physics may be observed, while the increased size of the bound states reduces decay into more deeply bound states. The model also allows for the study of non-universal Efimov trimers by including the effective range scattering parameter. While we find that in a certain regime the effective range parameter can take over the role of the three-body parameter, interestingly, we obtain a numerical relationship between these two parameters different from what was found in other models.



The authors gratefully acknowledge useful discussions with J. de Graaf and J. Slot.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    Efimov V.: Weakly bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)Google Scholar
  3. 3.
    Efimov V.: Low-energy properties of three resonantly interacting particles. Sov. J. Nucl. Phys. 29, 546 (1979)Google Scholar
  4. 4.
    Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nägerl H.-C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Ferlaino F., Grimm R.: Forty years of Efimov physics: how a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)CrossRefGoogle Scholar
  6. 6.
    Greene C.H.: Universal insights from few-body land. Phys. Today 63, 40 (2010)CrossRefGoogle Scholar
  7. 7.
    Knoop S., Ferlaino F., Mark M., Berninger M., Schöbel H., Nägerl H.-C., Grimm R.: Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering. Nat. Phys. 5, 227 (2009)CrossRefGoogle Scholar
  8. 8.
    Zaccanti M., Deissler B., D’Errico C., Fattori M., Jona-Lasinio M., Müller S., Roati G., Inguscio M., Modugno G.: Observation of an Efimov spectrum in an atomic system. Nat. Phys. 5, 586 (2009)CrossRefGoogle Scholar
  9. 9.
    Gross N., Shotan Z., Kokkelmans S.J.J.M.F., Khaykovich L.: Observation of universality in ultracold 7Li three-body recombination. Phys. Rev. Lett. 103, 163202 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Pollack S.E., Dries D., Hulet R.G.: Universality in three- and four-body bound states of ultracold atoms. Science 326, 1683 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Wenz A.N., Lompe T., Ottenstein T.B., Serwane F., Zürn G., Jochim S.: Universal trimer in a three-component Fermi gas. Phys. Rev. A 80, 040702(R) (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Lompe T., Ottenstein T.B., Serwane F., Viering K., Wenz A.N., Zürn G., Jochim S.: Atom–dimer scattering in a three-component fermi gas. Phys. Rev. Lett. 105, 103201 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Huckans J.H., Williams J.R., Hazlett E.L., Stites R.W., O’Hara K.M.: Three-body recombination in a three-state fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Williams J.R., Hazlett E.L., Huckans J.H., Stites R.W., Zhang Y., O’Hara K.M.: Evidence for an excited-state Efimov trimer in a three-component fermi gas. Phys. Rev. Lett. 103, 130404 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Nakajima S., Horikoshi M., Mukaiyama T., Naidon P., Ueda M.: Nonuniversal Efimov atom–dimer resonances in a three-component mixture of 6Li. Phys. Rev. Lett. 105, 023201 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Barontini G., Weber C., Rabatti F., Catani J., Thalhammer G., Inguscio M., Minardi F.: Observation of heteronuclear atomic Efimov resonances. Phys. Rev. Lett. 103, 043201 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Feshbach H.: Unified theory of nuclear reactions. Ann. Phys. (NY) 5, 357 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Feshbach, H.: A unified theory of nuclear reactions. II 19, 287 (1962)Google Scholar
  19. 19.
    Tiesinga E., Moerdijk A.J., Verhaar B.J., Stoof H.T.C.: Conditions for Bose–Einstein condensation in magnetically trapped atomic cesium. Phys. Rev. A 46, R1167 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Tiesinga E., Verhaar B.J., Stoof H.T.C.: Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Braaten E., Hammer H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Platter L., Hammer H.-W., Meissner U.-G.: Universal properties of the four-Boson system in two dimensions. Few Body Syst. 35, 169 (2004)ADSGoogle Scholar
  23. 23.
    Platter L., Hammer H.-W., Meissner U.-G.: Four-Boson system with short-range interactions. Phys. Rev. A 70, 052101 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    von Stecher J., D’Incao J.P., Greene C.H.: Signatures of universal four-body phenomena and their relation to the Efimov effect. Nat. Phys. 5, 417 (2009)CrossRefGoogle Scholar
  25. 25.
    Ferlaino F., Knoop S., Berninger M., Harm W., D’Incao J.P., Nägerl H.-C., Grimm R.: Evidence for universal four-body states tied to an Efimov trimer. Phys. Rev. Lett. 102, 140401 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Lompe T., Ottenstein T.B., Serwane F., Wenz A.N., Zürn G., Jochim S.: Radio–frequency association of Efimov trimers. Science 330, 940 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Jonsell S., Heiselberg H., Pethick C.J.: Universal behavior of the energy of trapped few-Boson systems with large scattering length. Phys. Rev. Lett. 89, 250401 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Fedorov D.V., Jensen A.S.: Efimov effect in coordinate space Faddeev equations. Phys. Rev. Lett. 71, 4103 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    Werner F., Castin Y.: Unitary quantum three-body problem in a harmonic trap. Phys. Rev. Lett. 97, 150401 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Stoll M., Köhler T.: Production of three-body Efimov molecules in an optical lattice. Phys. Rev. A 72, 022714 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Thøgersen M., Fedorov D.V., Jensen A.S.: Universal properties of Efimov physics beyond the scattering length approximation. Phys. Rev. A 78, 020501 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Liu X.J., Hu H., Drummond P.D.: Three attractively interacting fermions in a harmonic trap: exact solution, ferromagnetism and high-temperature thermodynamics. Phys. Rev. A 82, 023619 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Nielsen E., Fedorov D.V., Jensen A.S., Garrido E.: The three-body problem with short-range interactions. Phys. Rep. 347, 373 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Fedorov D.V., Jensen A.S.: Regularization of a three-body problem with zero-range potentials. J. Phys. A 34, 6003 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Platter L., Ji C., Phillips D.R.: Range corrections to three-body observables near a Feshbach resonance. Phys. Rev. A 79, 022702 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Werner, F.: Trapped cold atoms with resonant interactions: unitary gas and three-body problem, PhD thesis, ENS (2008)Google Scholar
  37. 37.
    Busch T., Englert B.-G., Rzazewski K., Wilkens M.: Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)CrossRefGoogle Scholar
  38. 38.
    Stöferle T., Moritz H., Günter K., Köhl M., Esslinger T.: Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Petrov D.S.: Three-Boson problem near a narrow Feshbach resonance. Phys. Rev. Lett. 93, 143201 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Gogolin A.O., Mora C., Egger R.: Analytical solution of the Bosonic three-body problem. Phys. Rev. Lett. 100, 140404 (2008)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Nuclear-spin-independent short-range three-body physics in ultracold atoms. Phys. Rev. Lett. 105, 103203 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Gross, N., Shotan, Z., Machtey, O., Kokkelmans, S., Khaykovich, L.: Study of Efimov physics in two nuclear-spin sublevels of 7Li. (preprint) (accepted for Comptes rendus Physique) (arXiv:1009.0926)Google Scholar
  43. 43.
    Ji C., Platter L., Phillips D.R.: Beyond universality in three-body recombination: an effective field theory treatment. EPL 92, 13003 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Marcelis B., Verhaar B., Kokkelmans S.: Total control over ultracold interactions via electric and magnetic fields. Phys. Rev. Lett. 100, 153201 (2008)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Courant Institute of Mathematical SciencesNew YorkUSA

Personalised recommendations