Advertisement

Few-Body Systems

, 51:249 | Cite as

The 4He Trimer as an Efimov System

  • E. A. Kolganova
  • A. K. Motovilov
  • W. Sandhas
Article

Abstract

We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4He three-atomic system.

Keywords

Faddeev Equation Atom Potential Virtual Level Helium Trimer Helium Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bruch L.W., McGee I.J.: Semiempirical helium intermolecular potential. II. Dilute gas properties. J. Chem. Phys. 52, 5884 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    Aziz R.A., Nain V.P.S., Carley J.S., Taylor W.L., McConville G.T.: An accurate intermolecular potential for helium. J. Chem. Phys. 79, 4330 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    Uang Y.-H., Stwalley W.C.: The possibility of a 4He2 bound state, effective range theory, and very low energy He–He scattering. J. Chem. Phys. 76, 5069 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    de Boer J.: Contribution to the quantum-mechanical theory of the equation of state and the law of corresponding states. Determination of the law of force of helium. Physica 24, S90 (1958)CrossRefGoogle Scholar
  5. 5.
    Beck, D.E.: A new interatomic potential function for helium. Mol. Phys. 14, 311 (1968); Errata, Ibid. 15, 332 (1968)Google Scholar
  6. 6.
    Janzen A.R., Aziz R.A.: Modern He–He potentials: another look at binding energy, effective range theory, retardation, and Efimov states. J. Chem. Phys. 103, 9626 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Efimov, V.N.: Weakly-bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971) [Yad. Fiz. 12, 1080 (1970)]Google Scholar
  8. 8.
    Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    Efimov V.: Energy levels of three resonantly interacting particles. Nucl. Phys. A. 210, 157 (1973)ADSCrossRefGoogle Scholar
  10. 10.
    Lim T.K., Duffy S.K., Damert W.C.: Efimov state in the 4He trimer. Phys. Rev. Lett. 38, 341 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    Anderson J.B., Traynor C.A., Boghosian B.M.: An exact quantum Monte Carlo calculation of the helium–helium intermolecular potential. J. Chem. Phys. 99, 345 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Bishop R.F., Ghassib H.B., Strayer M.R.: Low-energy He–He interactions with phenomenological potentials. J. Low Temp. Phys. 26, 669 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    Aziz R.A., McCourt F.R.W., Wong C.C.K.: A new determination of the ground state interatomic potential for He2. Mol. Phys. 61, 1487 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Aziz R.A., Slaman M.J.: An examination of ab initio results for helium potential energy curve. J. Chem. Phys. 94, 8047 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Tang K.T., Toennies J.P., Yiu: Accurate analytical He–He van der Waals potential based on perturbation theory. Phys. Rev. Lett. 74, 1546 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Korona T., Williams H.L., Bokowski R., Jeziorski B., Szalewicz K.: Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets. J. Chem. Phys. 106, 5109 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Janzen A.R., Aziz R.A.: An accurate potential energy curve for helium based on ab initio calculations. J. Chem. Phys. 107, 914 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Jeziorska M., Cencek W., Patkowski K., Jeziorski B., Szalewicz K.: Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data. J. Chem. Phys. 127, 124303 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Motovilov A.K., Sandhas W., Sofianos S.A., Kolganova E.A.: Binding energies and scattering observables in the 4He3 atomic system. Eur. Phys. J. D 13, 33 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Roudnev V., Yakovlev S.: Investigation of 4He3 trimer on the base of Faddeev equations in configuration space. Chem. Phys. Lett. 328, 97 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Barletta P., Kievsky A.: Variational description of the helium trimer using correlated hyperspherical harmonic basis functions. Phys. Rev. A 64, 042514 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Blume D., Greene C.H.: Monte Carlo hyperspherical description of helium cluster excited states. J. Chem. Phys. 112, 8053 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Blume D., Greene C.H., Esry B.D.: Comparative study of He3, Ne3, and Ar3 using hyperspherical coordinates. J. Chem. Phys. 113, 2145 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Lazauskas R., Carbonell J.: Description of 4He tetramer bound and scattering states. Phys. Rev. A 73, 062717 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Nielsen E., Fedorov D.V., Jensen A.S.: The structure of the atomic helium trimers: Halos and Efimov states. J. Phys. B 31, 4085 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Bressanini D., Zavaglia M., Mella M., Morosi G.: Quantum Monte Carlo investigation of small 4He clusters with a 3He impurity. J. Chem. Phys. 112, 717 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Salci M., Yarevsky E., Levin S.B., Elander N.: Finite element investigation of the ground states of the helium trimers 4He3 and 4He23He. Int. J. Quant. Chem. 107, 464 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Kolganova, E.A., Roudnev, V., Cavagnero, M: Solution of three-dimensional Faddeev equations: ultracold Helium trimer calculations with a public quantum three-body code. E-print arXiv:1010.1404Google Scholar
  29. 29.
    Orlandini S., Baccarelli I., Gianturco F.A.: Variational calculations of structures and energetics in very floppy trimers: a new computational implementation. Comp. Phys. Comm. 180, 384 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Barletta P., Kievsky A.: Scattering states of three-body systems with the hyperspherical adiabatic method. Few-Body Syst. 45, 123 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Kolganova E.A.: Helium trimer in the framework of Faddeev approach. Phys. Part. Nucl. 41, 1108 (2010)CrossRefGoogle Scholar
  32. 32.
    Motovilov A.K., Sofianos S.A., Kolganova E.A.: Bound states and scattering processes in the 4He3 atomic system. Chem. Phys. Lett. 275, 168 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    Kolganova E.A., Motovilov A.K., Sofianos S.A.: Three-body configuration space calculations with hard-core potentials. J. Phys. B 31, 1279 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Roudnev V.: Ultra-low energy elastic scattering in a system of three He atoms. Chem. Phys. Lett. 367, 95 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Roudnev V.A., Yakovlev S.L., Sofianos S.A.: Bound-state calculations for three atoms without explicit partial wave decomposition. Few-Body Syst. 37, 179 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Kolganova E.A., Motovilov A.K., Sandhas W.: Scattering length of the helium-atom–helium-dimer collision. Phys. Rev. A 70, 052711 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Suno H., Esry B.D.: Adiabatic hyperspherical study of triatomic helium systems. Phys. Rev. A 78, 062701 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Kolganova E.A., Motovilov A.K., Sandhas W.: Ultracold collisions in the system of three helium atoms. Phys. Part. Nucl. 40, 206 (2009)CrossRefGoogle Scholar
  39. 39.
    Cornelius T., Glöckle W.: Efimov states for three 4He atoms?. J. Chem. Phys 85, 3906 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    Esry B.D., Lin C.D., Greene C.H.: Adiabatic hyperspherical study of the helium trimer. Phys. Rev. A 54, 394 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    Bedaque P.E., Hammer H.-W., van Kolck U.: The three-boson system with short-range interactions. Nucl. Phys. A 646, 444 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Frederico T., Tomio L., Delfino A., Amorim A.E.A.: Scaling limit of weakly bound triatomic states. Phys. Rev. A 60, R9 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Yamashita M.T., Frederico T., Delfino A., Tomio L.: Scaling limit of virtual states of triatomic systems. Phys. Rev. A 66, 052702 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Braaten E., Hammer H.-W.: Universality in the three-body problem for 4He atoms. Phys. Rev. A 67, 042706 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Pen’kov F.M.: One-parametric dependences of spectra, scattering lengths and recombination coefficients for a system of three bosons. J. Exp. Theor. Phys. 97, 485 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Pen’kov F.M., Sandhas W.: Differential form of the Skornyakov–Ter-Martirosyan equations. Phys. Rev. A 72, 060702(R) (2006)Google Scholar
  47. 47.
    Platter L., Phillips D.R.: The three-boson system at next-to-next-to-leading order. Few-Body Syst. 40, 35 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Shepard J.R.: Calculations of recombination rates for cold 4He atoms from atom-dimer phase shifts and determination of universal scaling functions. Phys. Rev. A 75, 062713 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Braaten E., Hammer H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Luo F., McBane G.C., Kim G., Giese C.F., Gentry W.R.: The weakest bond: experimental observation of helium dimer. J. Chem. Phys. 98, 3564 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    Schöllkopf W., Toennies J.P.: Nondestructive mass selection of small van der Waals clusters. Science 266, 1345 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    Luo F., Giese C.F., Gentry W.R.: Direct measurement of the size of the helium dimer. J. Chem. Phys. 104, 1151 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    Grisenti R., Schöllkopf W., Toennies J.P., Hegerfeld G.C., Köhler T., Stoll M.: Determination of the bond length and binding energy of the helium dimer by diffraction from a transmission grating. Phys. Rev. Lett. 85, 2284 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    Hegerfeldt G.C., Köhler T.: How to study the elusive Efimov state of the 4He3 molecule through a new atom-optical state-selection technique. Phys. Rev. Lett. 84, 3215 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    Brühl R., Kalinin A., Kornilov O., Toennies J.P., Hegerfeld G.C., Stoll M.: Matter wave diffraction from an inclined transmission grating: searching for the elusive 4He trimer Efimov state. Phys. Rev. Lett. 95, 06002 (2005)CrossRefGoogle Scholar
  56. 56.
    Lewerenz M.: Structure and energetics of small helium clusters: quantum simulations using a recent perturbational pair potential. J. Chem. Phys. 106, 4596 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    Kolganova E.A., Motovilov A.K., Sandhas W.: Ultracold scattering processes in three-atomic helium systems. Nucl. Phys. A 790, 752c (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Kolganova E.A., Motovilov A.K.: Mechanism of the emergence of Efimov states in the 4He trimer. Phys. At. Nucl. 62, 1179 (1999)Google Scholar
  59. 59.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic, New York (1978)zbMATHGoogle Scholar
  60. 60.
    Tamura H.: The Efimov effect of three-body Schrödinger operators: asymptotics for the number of negative eigenvalues. Nagoya Math. J. 130, 55 (1993)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Sobolev A.V.: The Efimov effect. Discrete spectrum asymptotics. Commun. Math. Phys. 156, 101 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. 62.
    Danilov G.S.: On the three-body problem with short-range forces. Sov. Phys. JETP 13, 349 (1961)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Skornyakov G.V., Ter-Martirosyan K.A.: Three body problem for short-range forces. Low energy neutron scattering by deuterons. Sov. Phys. JETP 4, 648 (1956)zbMATHGoogle Scholar
  64. 64.
    Albeverio S., Lakaev S., Makarov K.A.: The Efimov effect and an extended Szegö-Kac limit theorem. Lett. Math. Phys. 43, 73 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Faddeev L.D.: Integral Equations Method in Scattering Theory for Three and More Particles. Mosk. Inzh. Fiz. Inst., Moscow (1971) (in Russian)Google Scholar
  66. 66.
    Amado R.D., Noble J.V.: On Efimov’s effect: a new pathology of three-particle systems. Phys. Lett. B 35, 25 (1971)ADSCrossRefGoogle Scholar
  67. 67.
    Amado R.D., Noble J.V.: Efimov’s effect: a new pathology of three-particle systems. II. Phys. Rev. D 5, 1992 (1971)ADSCrossRefGoogle Scholar
  68. 68.
    Merkuriev S.P., Faddeev L.D.: Quantum Scattering Theory for Several-Particle Systems. Nauka, Moscow (1985) (in Russian)Google Scholar
  69. 69.
    Jafaev D.R.: On the theory of the discrete spectrum of the three-particle Schrödinger operator. Math. USSR Sb. 23, 535 (1974)CrossRefGoogle Scholar
  70. 70.
    Vugal’ter S.A., Zhislin G.M.: On the discrete spectrum of Schrod̈inger operators of multiparticle systems with two-particle virtual levels. Dokl. Akad. Nauk SSSR 267, 784 (1982)MathSciNetGoogle Scholar
  71. 71.
    Wang X.P.: On the existence of the N-body Efimov effect. J. Funct. Anal. 209, 137 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Wang X.P., Wang Y.: Existence of two-cluster threshold resonances and the N-body Efimov effect. J. Math. Phys. 46, 112106 (2005)MathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Phillips A.C.: Three-body systems in nuclear physics. Rep. Prog. Phys. 40, 905 (1977)ADSCrossRefGoogle Scholar
  74. 74.
    Thomas L.H.: The interaction between a neutron and a proton and the structure of H 3. Phys. Rev. 47, 903 (1935)ADSzbMATHCrossRefGoogle Scholar
  75. 75.
    Minlos R.A., Faddeev L.D.: On the point interaction for a three-particle system in quantum mechanics. Sov. Phys. Dokl. 6, 1072 (1961)MathSciNetADSGoogle Scholar
  76. 76.
    Albeverio S., Høegh-Krohn R., Wu T.T.: A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior. Phys. Lett. A. 83, 105 (1981)MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    Makarov K.A., Melezhik V.V.: Two sides of a coin: the Efimov effect and collapse in a three-body system with point interactions. I. Theor. Math. Phys. 107, 755 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Nielsen E., Fedorov D.V., Jensen A.S., Garrido E.: The three-body problem with short-range interactions. Phys. Rep. 347, 373 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  79. 79.
    Lee M.D., Köhler T., Julienne P.S.: Excited Thomas–Efimov levels in ultracold gases. Phys. Rev. A. 76, 012720 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    Bedaque P.F., Braaten E., Hammer H.-W.: Three-body recombination in Bose gases with the large scattering length. Phys. Rev. Lett. 85, 908 (2000)ADSCrossRefGoogle Scholar
  81. 81.
    Stoll M., Köhler T.: Production of three-body Efimov molecules in an optical lattice. Phys. Rev. A 72, 022714 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    Jonsell S.: Efimov states for systems with negative scattering lengths. Europhys. Lett. 76, 8 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nag̈erl H.-C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315 (2006)ADSCrossRefGoogle Scholar
  84. 84.
    Thøgersen M., Fedorov D.V., Jensen A.S., Esry B.D., Wang Y.: Conditions for Efimov physics for finite-range potentials. Phys. Rev. A 80, 013608 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    Moerdijk A.J., Verhaar B.J., Axelsson A.: Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys. Rev. A. 51, 4852 (1995)ADSCrossRefGoogle Scholar
  86. 86.
    Nag̈erl H.-C., Kraemer T., Mark M., Waldburger P., Danzl J.G., Engeser B., Lange A.D., Pilch K., Jaakkola A., Chin C., Grimm R.: Experimental evidence for Efimov quantum states. AIP Conf. Proc. 869, 269 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    Esry B.D., Greene C.H.: A ménage à trois laid bare. Nature 440, 289 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    Barontini, G., Weber, C., Rabatti, F., Catani, J., Thalhammer, G., Inguscio, M., Minardi, F.: Observation of heteronuclear atomic Efimov resonances. Phys. Rev. Lett. 103, 043201 (2009); Erratum, Ibid. 104, 059901 (2010)Google Scholar
  89. 89.
    Lompe T., Ottenstein T.B., Serwane F., Viering K., Wenz A.N., Zürn G., Jochim S.: Atom–dimer scattering in a three-component fermi gas. Phys. Rev. Lett. 105, 103201 (2010)ADSCrossRefGoogle Scholar
  90. 90.
    Kolganova E.A., Motovilov A.K., Sandhas W.: Ultracold helium trimers. Few-Body Syst. 44, 233 (2008)ADSCrossRefGoogle Scholar
  91. 91.
    Kolganova E.A., Motovilov A.K.: Scattering and resonances in the 4He three-atomic system. Comp. Phys. Comm. 126, 88 (2000)ADSzbMATHCrossRefGoogle Scholar
  92. 92.
    Motovilov A.K., Kolganova E.A.: Structure of T- and S-matrices in unphysical sheets and resonances in three-body systems. Few-Body Syst. Suppl. 10, 75 (1999)CrossRefGoogle Scholar
  93. 93.
    Motovilov A.K.: Representations for the three-body T-matrix, scattering matrices and resolvent on unphysical energy sheets. Math. Nachr. 187, 147 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    von Stecher J.: Weakly bound cluster states of Efimov character. J. Phys. B 43, 101002 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    Esry B.D.: Ultracold experiments strike universal physics—again. Physics 2, 26 (2009)CrossRefGoogle Scholar
  96. 96.
    Wang Y., Esry B.D.: Efimov trimer formation via ultracold four-body recombination. Phys. Rev. Lett. 102, 133201 (2009)ADSCrossRefGoogle Scholar
  97. 97.
    Ferlaino F., Grimm R.G.: Forty years of Efimov physics: How a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • E. A. Kolganova
    • 1
  • A. K. Motovilov
    • 1
  • W. Sandhas
    • 2
  1. 1.Bogoliubov Laboratory of Theoretical Physics, JINRDubnaRussia
  2. 2.Physikalisches InstitutUniversität BonnBonnGermany

Personalised recommendations