Few-Body Systems

, Volume 51, Issue 2–4, pp 153–180

Efimov Physics from the Functional Renormalization Group

  • Stefan Floerchinger
  • Sergej Moroz
  • Richard Schmidt


Few-body physics related to the Efimov effect is discussed using the functional renormalization group method. After a short review of renormalization in its modern formulation we apply this formalism to the description of scattering and bound states in few-body systems of identical bosons and distinguishable fermions with two and three components. The Efimov effect leads to a limit cycle in the renormalization group flow. Recently measured three-body loss rates in an ultracold Fermi gas of 6Li atoms are explained within this framework. We also discuss briefly the relation to the many-body physics of the BCS–BEC crossover for two-component fermions and the formation of a trion phase for the case of three species.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braaten E., Hammer H.W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. 33, 563 (1970)Google Scholar
  3. 3.
    Efimov V.: Energy levels of three resonantly-interacting particles. Nucl. Phys. A 210, 157 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    Bedaque P.F., Hammer H.W., van Kolck U.: Renormalization of the three-body system with short-range interactions. Phys. Rev. Lett. 82, 463 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Ferlaino F., Grimm R.: Forty years of Efimov physics: How a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)CrossRefGoogle Scholar
  6. 6.
    Ottenstein T.B., Lompe T., Kohnen M., Wenz A.N., Jochim S.: Collisional stability of a three-component degenerate Fermi gas. Phys. Rev. Lett. 101, 203202 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Huckans J.H., Williams J.R., Hazlett E.L., Stites R.W., O’Hara K.M.: Three-body recombination in a three-state Fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Berges J., Tetradis N., Wetterich C.: Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Morris T.R.: Elements of the continuous renormalization group. Prog. Theor. Phys. Suppl. 131, 395 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Aoki K.: Introduction to the non-perturbative renormalization group and its recent applications. Int. J. Mod. Phys. B 14, 1249 (2000)ADSMATHGoogle Scholar
  11. 11.
    Bagnuls C., Bervillier C.: Exact renormalization group equations: an introductory review. Phys. Rep. 348, 91 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Polonyi J.: Lectures on the functional renormalization group method. Central Eur. J. Phys. 1, 1 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Salmhofer M., Honerkamp C.: Fermionic renormalization group flows—technique and theory. Prog. Theor. Phys. 105, 1 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Delamotte, B.: An introduction to the nonperturbative renormalization group. cond-mat/0702365Google Scholar
  15. 15.
    Schaefer B.J., Wambach J.: Renormalization group approach towards the QCD phase diagram. Phys. Part. Nucl. 39, 1025 (2008)CrossRefGoogle Scholar
  16. 16.
    Pawlowski J.M.: Aspects of the functional renormalisation group. Ann. Phys. 322, 2831 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Rosten, O.J.: Fundamentals of the Exact Renormalization Group. arXiv:1003.1366Google Scholar
  18. 18.
    Wetterich C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Diehl S., Wetterich C.: Functional integral for ultracold fermionic atoms. Nucl. Phys. B 770, 206 (2007)ADSMATHCrossRefGoogle Scholar
  20. 20.
    Diehl S., Wetterich C.: Universality in phase transitions for ultracold fermionic atoms. Phys. Rev. A 73, 033615 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Diehl, S.: Universality in the BCS-BEC crossover in cold Fermion gases. cond-mat/0701157Google Scholar
  22. 22.
    Diehl S., Krahl H.C., Scherer M.: Three-body scattering from nonperturbative flow equations. Phys. Rev. C 78, 034001 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Moroz S., Floerchinger S., Schmidt R., Wetterich C.: Efimov effect from functional renormalization. Phys. Rev. A 79, 042705 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Diehl S., Floerchinger S., Gies H., Pawlowski J.M., Wetterich C.: Functional renormalization group approach to the BCS-BEC crossover. Ann. Phys. (Berlin) 522, 615 (2010)ADSGoogle Scholar
  25. 25.
    Floerchinger, S.: Functional renormalization and ultracold quantum gases. Doctoral thesis, Universität Heidelberg (2009)Google Scholar
  26. 26.
    Gies H., Wetterich C.: Renormalization flow of bound states. Phys. Rev. D 65, 065001 (2002)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Gies H., Wetterich C.: Renormalization flow from UV to IR degrees of freedom. Acta Phys. Slov. 52, 215 (2002)Google Scholar
  28. 28.
    Floerchinger S., Wetterich C.: Exact flow equation for composite operators. Phys. Lett. B 680, 371 (2009)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Floerchinger S.: Exact flow equation for bound states. Eur. Phys. J. C 69, 119 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Birse M.C.: Functional renormalization group for two-body scattering. Phys. Rev. C 77, 047001 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Skorniakov G.V., Ter-Martirosian K.A.: Three body problem for short range forces 1. Scattering of low energy neutrons by deuterons. Zh. Eksp. Teor. Phys. 31, 775 (1956)Google Scholar
  32. 32.
    Skorniakov G.V., Ter-Martirosian K.A.: Sov. Phys. JETP 4, 648 (1957)MathSciNetGoogle Scholar
  33. 33.
    Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Giorgini S., Pitaevskii L.P., Stringari S.: Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Birse M.C., Krippa B., McGovern J.A., Walet N.R.: Pairing in many-fermion systems: an exact renormalisation group treatment. Phys. Lett. B 605, 287 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Diehl S., Gies H., Pawlowski J.M., Wetterich C.: Flow equations for the BCS-BEC crossover. Phys. Rev. A 76, 021602(R) (2007)ADSGoogle Scholar
  37. 37.
    Diehl S., Gies H., Pawlowski J.M., Wetterich C.: Renormalization flow and universality for ultracold fermionic atoms. Phys. Rev. A 76, 53627 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Floerchinger S., Scherer M., Diehl S., Wetterich C.: Particle-hole fluctuations in BCS-BEC crossover. Phys. Rev. B 78, 174528 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Bartosch L., Kopietz P., Ferraz A.: Renormalization of the BCS-BEC crossover by order-parameter fluctuations. Phys. Rev. B 80, 104514 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Floerchinger S., Scherer M.M., Wetterich C.: Modified Fermi sphere, pairing gap, and critical temperature for the BCS-BEC crossover. Phys. Rev. A 81, 063619 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Petrov D.S., Salomon C., Shlyapnikov G.V.: Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Krippa B., Walet N.R., Birse M.C.: Renormalization group, dimer-dimer scattering, and three-body forces. Phys. Rev. A 81, 043628 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Birse, M.C., Krippa, B., Walet, N.R.: Convergence of a renormalization group approach to dimer-dimer scattering. arXiv:1011.5852Google Scholar
  44. 44.
    Scherer, M.M., Floerchinger, S., Gies, H.: Functional renormalization for the BCS-BEC crossover. arXiv:1010.2890Google Scholar
  45. 45.
    Floerchinger S., Schmidt R., Moroz S., Wetterich C.: Functional renormalization for trion formation in ultracold fermion gases. Phys. Rev. A 79, 013603 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Kokkelmans S.J.J.M.F., Milstein J.N., Chiofalo M.L., Walser R., Holland M.J.: Resonance superfluidity: renormalization of resonance scattering theory. Phys. Rev. A 65, 053617 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Bartenstein M., Altmeyer A., Riedl S., Geursen R., Jochim S., Chin C., Hecker Denschlag J., Grimm R., Simoni A., Tiesinga E., Williams C.J., Julienne P.S.: Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94, 103201 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Schmidt R., Moroz S.: Renormalization-group study of the four-body problem. Phys. Rev. A 81, 052709 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Rapp A., Zarand G., Honerkamp C., Hofstetter W.: Color superfluidity and “Baryon” formation in ultracold fermions. Phys. Rev. Lett. 98, 160405 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Rapp A., Hofstetter W., Zarand G.: Trionic phase of ultracold fermions in an optical lattice: a variational study. Phys. Rev. B 77, 144520 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Wilczek F.: Quantum chromodynamics: lifestyles of the small and simple. Nat. Phys. 3, 375 (2007)CrossRefGoogle Scholar
  52. 52.
    Floerchinger S., Schmidt R., Wetterich C.: Three-body loss in lithium from functional renormalization. Phys. Rev. A 79, 053633 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Braaten E., Hammer H.W., Kang D., Platter L.: Three-body recombination of 6Li atoms with large negative scattering lengths. Phys. Rev. Lett. 103, 073202 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Naidon P., Ueda M.: Possible Efimov trimer state in a three-hyperfine-component Lithium-6 mixture. Phys. Rev. Lett. 103, 073203 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Wenz A.N., Lompe T., Ottenstein T.B., Serwane F., Zürn G., Jochim S.: Universal trimer in a three-component Fermi gas. Phys. Rev. A 80, 040702(R) (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Hammer H.W., Kang D., Platter L.: Efimov physics in atom-dimer scattering of 6Li atoms. Phys. Rev. A 82, 022715 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Naidon, P., Ueda, M.: The Efimov effect in lithium 6. arXiv:1008.2260v2 (2010)Google Scholar
  58. 58.
    Williams J.R., Hazlett E.L., Huckans J.H., Stites R.W., Zhang Y., O’Hara K.M.: Evidence for an excited-state Efimov trimer in a three-component Fermi gas. Phys. Rev. Lett. 103, 130404 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Lompe T., Ottenstein T.B., Serwane F., Viering K., Wenz A.N., Zürn G., Jochim S.: Atom-dimer scattering in a three-component Fermi gas. Phys. Rev. Lett. 105, 103201 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Lompe T., Ottenstein T.B., Serwane F., Wenz A.N., Zürn G., Jochim S.: Radio-frequency association of Efimov trimers. Science 330, 940 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Floerchinger
    • 1
    • 2
  • Sergej Moroz
    • 1
  • Richard Schmidt
    • 3
  1. 1.Institut für Theoretische PhysikHeidelbergGermany
  2. 2.Physics DepartmentTheory Unit, CERNGeneva 23Switzerland
  3. 3.Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations