Advertisement

Few-Body Systems

, Volume 51, Issue 2–4, pp 153–180 | Cite as

Efimov Physics from the Functional Renormalization Group

  • Stefan FloerchingerEmail author
  • Sergej Moroz
  • Richard Schmidt
Article

Abstract

Few-body physics related to the Efimov effect is discussed using the functional renormalization group method. After a short review of renormalization in its modern formulation we apply this formalism to the description of scattering and bound states in few-body systems of identical bosons and distinguishable fermions with two and three components. The Efimov effect leads to a limit cycle in the renormalization group flow. Recently measured three-body loss rates in an ultracold Fermi gas of 6Li atoms are explained within this framework. We also discuss briefly the relation to the many-body physics of the BCS–BEC crossover for two-component fermions and the formation of a trion phase for the case of three species.

Keywords

Renormalization Group Yukawa Coupling Trion Derivative Expansion Feshbach Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braaten E., Hammer H.W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. 33, 563 (1970)Google Scholar
  3. 3.
    Efimov V.: Energy levels of three resonantly-interacting particles. Nucl. Phys. A 210, 157 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    Bedaque P.F., Hammer H.W., van Kolck U.: Renormalization of the three-body system with short-range interactions. Phys. Rev. Lett. 82, 463 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Ferlaino F., Grimm R.: Forty years of Efimov physics: How a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)CrossRefGoogle Scholar
  6. 6.
    Ottenstein T.B., Lompe T., Kohnen M., Wenz A.N., Jochim S.: Collisional stability of a three-component degenerate Fermi gas. Phys. Rev. Lett. 101, 203202 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Huckans J.H., Williams J.R., Hazlett E.L., Stites R.W., O’Hara K.M.: Three-body recombination in a three-state Fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Berges J., Tetradis N., Wetterich C.: Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Morris T.R.: Elements of the continuous renormalization group. Prog. Theor. Phys. Suppl. 131, 395 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Aoki K.: Introduction to the non-perturbative renormalization group and its recent applications. Int. J. Mod. Phys. B 14, 1249 (2000)ADSzbMATHGoogle Scholar
  11. 11.
    Bagnuls C., Bervillier C.: Exact renormalization group equations: an introductory review. Phys. Rep. 348, 91 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Polonyi J.: Lectures on the functional renormalization group method. Central Eur. J. Phys. 1, 1 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Salmhofer M., Honerkamp C.: Fermionic renormalization group flows—technique and theory. Prog. Theor. Phys. 105, 1 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Delamotte, B.: An introduction to the nonperturbative renormalization group. cond-mat/0702365Google Scholar
  15. 15.
    Schaefer B.J., Wambach J.: Renormalization group approach towards the QCD phase diagram. Phys. Part. Nucl. 39, 1025 (2008)CrossRefGoogle Scholar
  16. 16.
    Pawlowski J.M.: Aspects of the functional renormalisation group. Ann. Phys. 322, 2831 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Rosten, O.J.: Fundamentals of the Exact Renormalization Group. arXiv:1003.1366Google Scholar
  18. 18.
    Wetterich C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Diehl S., Wetterich C.: Functional integral for ultracold fermionic atoms. Nucl. Phys. B 770, 206 (2007)ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Diehl S., Wetterich C.: Universality in phase transitions for ultracold fermionic atoms. Phys. Rev. A 73, 033615 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Diehl, S.: Universality in the BCS-BEC crossover in cold Fermion gases. cond-mat/0701157Google Scholar
  22. 22.
    Diehl S., Krahl H.C., Scherer M.: Three-body scattering from nonperturbative flow equations. Phys. Rev. C 78, 034001 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Moroz S., Floerchinger S., Schmidt R., Wetterich C.: Efimov effect from functional renormalization. Phys. Rev. A 79, 042705 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Diehl S., Floerchinger S., Gies H., Pawlowski J.M., Wetterich C.: Functional renormalization group approach to the BCS-BEC crossover. Ann. Phys. (Berlin) 522, 615 (2010)ADSGoogle Scholar
  25. 25.
    Floerchinger, S.: Functional renormalization and ultracold quantum gases. Doctoral thesis, Universität Heidelberg (2009)Google Scholar
  26. 26.
    Gies H., Wetterich C.: Renormalization flow of bound states. Phys. Rev. D 65, 065001 (2002)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Gies H., Wetterich C.: Renormalization flow from UV to IR degrees of freedom. Acta Phys. Slov. 52, 215 (2002)Google Scholar
  28. 28.
    Floerchinger S., Wetterich C.: Exact flow equation for composite operators. Phys. Lett. B 680, 371 (2009)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Floerchinger S.: Exact flow equation for bound states. Eur. Phys. J. C 69, 119 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Birse M.C.: Functional renormalization group for two-body scattering. Phys. Rev. C 77, 047001 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Skorniakov G.V., Ter-Martirosian K.A.: Three body problem for short range forces 1. Scattering of low energy neutrons by deuterons. Zh. Eksp. Teor. Phys. 31, 775 (1956)Google Scholar
  32. 32.
    Skorniakov G.V., Ter-Martirosian K.A.: Sov. Phys. JETP 4, 648 (1957)MathSciNetGoogle Scholar
  33. 33.
    Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Giorgini S., Pitaevskii L.P., Stringari S.: Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Birse M.C., Krippa B., McGovern J.A., Walet N.R.: Pairing in many-fermion systems: an exact renormalisation group treatment. Phys. Lett. B 605, 287 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Diehl S., Gies H., Pawlowski J.M., Wetterich C.: Flow equations for the BCS-BEC crossover. Phys. Rev. A 76, 021602(R) (2007)ADSGoogle Scholar
  37. 37.
    Diehl S., Gies H., Pawlowski J.M., Wetterich C.: Renormalization flow and universality for ultracold fermionic atoms. Phys. Rev. A 76, 53627 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Floerchinger S., Scherer M., Diehl S., Wetterich C.: Particle-hole fluctuations in BCS-BEC crossover. Phys. Rev. B 78, 174528 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Bartosch L., Kopietz P., Ferraz A.: Renormalization of the BCS-BEC crossover by order-parameter fluctuations. Phys. Rev. B 80, 104514 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Floerchinger S., Scherer M.M., Wetterich C.: Modified Fermi sphere, pairing gap, and critical temperature for the BCS-BEC crossover. Phys. Rev. A 81, 063619 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Petrov D.S., Salomon C., Shlyapnikov G.V.: Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Krippa B., Walet N.R., Birse M.C.: Renormalization group, dimer-dimer scattering, and three-body forces. Phys. Rev. A 81, 043628 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Birse, M.C., Krippa, B., Walet, N.R.: Convergence of a renormalization group approach to dimer-dimer scattering. arXiv:1011.5852Google Scholar
  44. 44.
    Scherer, M.M., Floerchinger, S., Gies, H.: Functional renormalization for the BCS-BEC crossover. arXiv:1010.2890Google Scholar
  45. 45.
    Floerchinger S., Schmidt R., Moroz S., Wetterich C.: Functional renormalization for trion formation in ultracold fermion gases. Phys. Rev. A 79, 013603 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Kokkelmans S.J.J.M.F., Milstein J.N., Chiofalo M.L., Walser R., Holland M.J.: Resonance superfluidity: renormalization of resonance scattering theory. Phys. Rev. A 65, 053617 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Bartenstein M., Altmeyer A., Riedl S., Geursen R., Jochim S., Chin C., Hecker Denschlag J., Grimm R., Simoni A., Tiesinga E., Williams C.J., Julienne P.S.: Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94, 103201 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Schmidt R., Moroz S.: Renormalization-group study of the four-body problem. Phys. Rev. A 81, 052709 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Rapp A., Zarand G., Honerkamp C., Hofstetter W.: Color superfluidity and “Baryon” formation in ultracold fermions. Phys. Rev. Lett. 98, 160405 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Rapp A., Hofstetter W., Zarand G.: Trionic phase of ultracold fermions in an optical lattice: a variational study. Phys. Rev. B 77, 144520 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Wilczek F.: Quantum chromodynamics: lifestyles of the small and simple. Nat. Phys. 3, 375 (2007)CrossRefGoogle Scholar
  52. 52.
    Floerchinger S., Schmidt R., Wetterich C.: Three-body loss in lithium from functional renormalization. Phys. Rev. A 79, 053633 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Braaten E., Hammer H.W., Kang D., Platter L.: Three-body recombination of 6Li atoms with large negative scattering lengths. Phys. Rev. Lett. 103, 073202 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Naidon P., Ueda M.: Possible Efimov trimer state in a three-hyperfine-component Lithium-6 mixture. Phys. Rev. Lett. 103, 073203 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Wenz A.N., Lompe T., Ottenstein T.B., Serwane F., Zürn G., Jochim S.: Universal trimer in a three-component Fermi gas. Phys. Rev. A 80, 040702(R) (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Hammer H.W., Kang D., Platter L.: Efimov physics in atom-dimer scattering of 6Li atoms. Phys. Rev. A 82, 022715 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Naidon, P., Ueda, M.: The Efimov effect in lithium 6. arXiv:1008.2260v2 (2010)Google Scholar
  58. 58.
    Williams J.R., Hazlett E.L., Huckans J.H., Stites R.W., Zhang Y., O’Hara K.M.: Evidence for an excited-state Efimov trimer in a three-component Fermi gas. Phys. Rev. Lett. 103, 130404 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Lompe T., Ottenstein T.B., Serwane F., Viering K., Wenz A.N., Zürn G., Jochim S.: Atom-dimer scattering in a three-component Fermi gas. Phys. Rev. Lett. 105, 103201 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Lompe T., Ottenstein T.B., Serwane F., Wenz A.N., Zürn G., Jochim S.: Radio-frequency association of Efimov trimers. Science 330, 940 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Floerchinger
    • 1
    • 2
    Email author
  • Sergej Moroz
    • 1
  • Richard Schmidt
    • 3
  1. 1.Institut für Theoretische PhysikHeidelbergGermany
  2. 2.Physics DepartmentTheory Unit, CERNGeneva 23Switzerland
  3. 3.Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations