Few-Body Systems

, Volume 51, Issue 2–4, pp 207–217 | Cite as

Universal Physics of 2+1 Particles with Non-Zero Angular Momentum

  • Shimpei EndoEmail author
  • Pascal Naidon
  • Masahito Ueda


The zero-energy universal properties of scattering between a particle and a dimer that involves an identical particle are investigated for arbitrary scattering angular momenta. For this purpose, we derive an integral equation that generalises the Skorniakov–Ter-Martirosian equation to the case of non-zero angular momentum. As the mass ratio between the particles is varied, we find various scattering resonances that can be attributed to the appearance of universal trimers and Efimov trimers at the collisional threshold.


Identical Particle Scatter Length Universal Physic Identical Fermion Fermionic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skorniakov G.A., Ter-Martirosian K.A.: The three-body problem with short-range forces. scattering of low-energy neutrons by deuterons. Sov. Phys. JETP 4, 648 (1957)MathSciNetGoogle Scholar
  2. 2.
    Petrov D.S.: Three-body problem in fermi gases with short-range interparticle interaction. Phys. Rev. A 67(1), 010703 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Petrov D.S., Salomon C., Shlyapnikov G.V.: Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93(9), 090404 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Ho T.L.: Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92(9), 090402 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33(8), 563–564 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    Efimov V.: Energy levels of three resonantly interacting particles. Nucl. Phys. A 210(1), 157–188 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nägerl H.C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440(7082), 315–318 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Lompe T., Ottenstein T.B., Serwane F., Wenz A.N., Zuern G., Jochim S.: Radio-frequency association of Efimov trimers. Science 330(6006), 940–944 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Nakajima, S., Horikoshi, M., Mukaiyama, T., Naidon, P., Ueda, M.: Measurement of an Efimov trimer binding energy in a three-component mixture of 6Li. arXiv:1010.1954 (2010)Google Scholar
  10. 10.
    Williams J.R., Hazlett E.L., Huckans J.H., Stites R.W., Zhang Y., O’Hara K.M.: Evidence for an excited-state efimov trimer in a three-component fermi gas. Phys. Rev. Lett. 103(13), 130404 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Barontini G., Weber C., Rabatti F., Catani J., Thalhammer G., Inguscio M., Minardi F.: Observation of heteronuclear atomic efimov resonances. Phys. Rev. Lett. 103(4), 043201 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Pollack S.E., Dries D., Hulet R.G.: Universality in Three-and Four-Body Bound States of Ultracold Atoms. Science 326(5960), 1683 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Observation of universality in ultracold 7Li three-body recombination. Phys. Rev. Lett. 103(16), 163202 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Kartavtsev O.I., Malykh A.V.: Low-energy three-body dynamics in binary quantum gases. J. Phys. B 40, 1429 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Levinsen J., Tiecke T.G., Walraven J.T.M., Petrov D.S.: Atom–dimer scattering and long-lived trimers in fermionic mixtures. Phys. Rev. Lett. 103(15), 153202 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Kartavtsev O.I., Malykh A.V.: Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions. JETP Lett. 86(10), 625–629 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Kartavtsev O.I., Malykh A.V.: Universal three-body dynamics in binary mixtures of ultra-cold atoms. Few-Body Syst. 44(1), 229–232 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Landau L.D., Lifshitz E.M.: Quantum Mechanics: Non-Relativistic Theory. Butterworth-Heinemann, Oxford (1991)Google Scholar
  19. 19.
    Naidon, P., Ueda, M.: The Efimov effect in lithium 6. arXiv:1008.2260, 2010. doi: 10.1016/j.crhy.2010.12.002 [to be published in C. R. Physique (2010)]
  20. 20.
    Nielsen E., Fedorov D.V., Jensen A.S., Garrido E.: The three-body problem with short-range interactions. Phys. Rep. 347(5), 373–459 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Iskin M.: Dimer–atom scattering between two identical fermions and a third particle. Phys. Rev. A 81(4), 043634 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Inouye S., Andrews M.R., Stenger J., Miesner H.J., Stamper-Kurn D.M., Ketterle W.: Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392(6672), 151–154 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Kartavtsev O.I., Malykh A.V., Sofianos S.A.: Bound states and scattering lengths of three two-component particles with zero-range interactions under one-dimensional confinement. Sov. Phys. JETP 108(3), 365–373 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Pricoupenko L., Pedri P.: Universal (1 + 2)-body bound states in planar atomic waveguides. Phys. Rev. A 82(3), 033625 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Brodsky I.V., Kagan M.Yu., Klaptsov A.V., Combescot R., Leyronas X.: Exact diagrammatic approach for dimer–dimer scattering and bound states of three and four resonantly interacting particles. Phys. Rev. A 73(3), 032724 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan
  2. 2.ERATO Macroscopic Quantum Control Project, JSTTokyoJapan

Personalised recommendations