Few-Body Systems

, Volume 49, Issue 1–4, pp 255–261 | Cite as

Delta Properties in the Rainbow-Ladder Truncation of Dyson–Schwinger Equations

  • D. Nicmorus
  • G. Eichmann
  • A. Krassnigg
  • R. Alkofer
Article

Abstract

We present a calculation of the three-quark core contribution to nucleon and Δ-baryon masses and Δ electromagnetic form factors in a Poincaré-covariant Faddeev approach. A consistent setup for the dressed-quark propagator, the quark–quark, quark–’diquark’ and quark–photon interactions is employed, where all ingredients are solutions of their respective Dyson–Schwinger or Bethe–Salpeter equations in a rainbow-ladder truncation. The resulting Δ electromagnetic form factors concur with present experimental and lattice data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicmorus, D., Eichmann, G., Alkofer, R.: Delta and omega electromagnetic form factors in a Dyson–Schwinger/Bethe–Salpeter approach. arXiv:1008.3184 [hep-ph]Google Scholar
  2. 2.
    Nicmorus D., Eichmann G., Krassnigg A., Alkofer R.: Delta-baryon mass in a covariant Faddeev approach. Phys. Rev. D 80, 054028 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Nicmorus, D., Eichmann, G., Krassnigg, A., Alkofer, R.: Faddeev equations: a view of baryon properties, PoS CONFINEMENT8, 052 (2008)Google Scholar
  4. 4.
    Eichmann G., Cloet I.C., Alkofer R., Krassnigg A., Roberts C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Eichmann, G., Alkofer, R., Krassnigg, A., Nicmorus, D.: Meson and nucleon properties from Dyson–Schwinger QCD, PoS CONFINEMENT8, 077 (2008)Google Scholar
  6. 6.
    Roberts C.D., Williams A.G.: Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Alkofer R., von Smekal L.: The infrared behavior of QCD Green’s functions: confinement, dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rept. 353, 281 (2001)ADSMATHCrossRefGoogle Scholar
  8. 8.
    Fischer C.S.: Infrared properties of QCD from Dyson–Schwinger equations. J. Phys. G 32, R253 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Maris P., Roberts C.D.: Dyson–Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Roberts C.D., Bhagwat M.S., Holl A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. ST 140, 53 (2007)Google Scholar
  11. 11.
    Eichmann, G.: Hadron properties from QCD bound-state equations. arXiv:0909.0703 [hep-ph]Google Scholar
  12. 12.
    Eichmann G., Alkofer R., Krassnigg A., Nicmorus D.: Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Eichmann G., Alkofer R., Krassnigg A., Nicmorus D.: Covariant solution of the three-quark problem in quantum field theory: the nucleon. EPJ Web Conf. 3, 03028 (2010)CrossRefGoogle Scholar
  14. 14.
    Alkofer R., Eichmann G., Krassnigg A., Nicmorus D.: Hadron properties from QCD bound-state equations: a status report. Chin. Phys. C 34, 1175 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Oettel M., Hellstern G., Alkofer R., Reinhardt H.: Octet and decuplet baryons in a covariant and confining diquark–quark model. Phys. Rev. C 58, 2459 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Cahill R.T., Roberts C.D., Praschifka J.: Calculation Of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Maris P.: Effective masses of diquarks. Few Body Syst. 32, 41 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Holl A., Krassnigg A., Maris P., Roberts C.D., Wright S.V.: Electromagnetic properties of ground and excited state pseudoscalar mesons. Phys. Rev. C 71, 065204 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Maris P., Tandy P.C.: QCD modeling of hadron physics. Nucl. Phys. Proc. Suppl. 161, 136 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Maris P.: Hadron physics and the Dyson–Schwinger equations of QCD. AIP Conf. Proc. 892, 65 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Bhagwat M.S., Maris P.: Vector meson form factors and their quark-mass dependence. Phys. Rev. C 77, 025203 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Eichmann G., Krassnigg A., Schwinzerl M., Alkofer R.: A covariant view on the nucleons’ quark core. Ann. Phys. 323, 2505 (2008)ADSMATHCrossRefGoogle Scholar
  23. 23.
    Cloet I.C., Eichmann G., Flambaum V.V., Roberts C.D., Bhagwat M.S., Holl A.: Current quark mass dependence of nucleon magnetic moments and radii. Few Body Syst. 42, 91 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Krassnigg A.: Survey of J = 0,1 mesons in a Bethe–Salpeter approach. Phys. Rev. D 80, 114010 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Alkofer R., Fischer C.S., Llanes-Estrada F.J., Schwenzer K.: The quark-gluon vertex in Landau gauge QCD: its role in dynamical chiral symmetry breaking and quark confinement. Ann. Phys. 324, 106 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Fischer C.S., Williams R.: Probing the gluon self-interaction in light mesons. Phys. Rev. Lett. 103, 122001 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Chang L., Roberts C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Alkofer R., Fischer C.S., Williams R.: U A(1) anomaly and eta’ mass from an infrared singular quark-gluon vertex. Eur. Phys. J. A 38, 53 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Fischer C.S., Williams R.: Beyond the rainbow: effects from pion back-coupling. Phys. Rev. D 78, 074006 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Chang, L., Roberts, C.D.: Hadron physics: the essence of matter. arXiv:1003.5006 [nucl-th]Google Scholar
  31. 31.
    Eichmann G., Alkofer R., Cloet I.C., Krassnigg A., Roberts C.D.: Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Blank M., Krassnigg A.: The QCD chiral transition temperature in a Dyson–Schwinger-equation context. Phys. Rev. D 82, 034006 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Holl A., Krassnigg A., Roberts C.D.: Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Maris P., Tandy P.C.: Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Bender A., Roberts C.D., von Smekal L.: Goldstone theorem and diquark confinement beyond rainbow-ladder approximation. Phys. Lett. B 380, 7 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    Alkofer R., Kloker M., Krassnigg A., Wagenbrunn R.F.: Aspects of the confinement mechanism in Coulomb-gauge QCD. Phys. Rev. Lett. 96, 022001 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Amsler C. et al.: [Particle Data Group], Review of particle physics. Phys. Lett. B 667, 1 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Ali Khan A. et al.: [CP-PACS Collaboration], Light hadron spectroscopy with two flavors of dynamical quarks on the lattice. Phys. Rev. D 65, 054505 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    Allton C.R., Armour W., Leinweber D.B., Thomas A.W., Young R.D.: Chiral and continuum extrapolation of partially-quenched lattice results. Phys. Lett. B 628, 125 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Ali Khan A. et al.: [QCDSF-UKQCD Collaboration], The nucleon mass in N(f)  =  2 lattice QCD: finite size effects from chiral perturbation theory. Nucl. Phys. B 689, 175 (2004)ADSMATHCrossRefGoogle Scholar
  42. 42.
    Leinweber D.B., Thomas A.W., Young R.D.: Physical nucleon properties from lattice QCD. Phys. Rev. Lett. 92, 242002 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Frigori, R., Gattringer, C., Lang, C.B., Limmer, M., Maurer, T., Mohler, D., Schafer, A.: Dynamical chirally improved quarks: first results for hadron masses. PoS LAT2007, 114 (2007)Google Scholar
  44. 44.
    Alexandrou C. et al.: Quark transverse charge densities in the Δ(1232) from lattice QCD. Nucl. Phys. A 825, 115 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Zanotti J.M., Leinweber D.B., Williams A.G., Zhang J.B., Melnitchouk W., Choe S.: [CSSM Lattice collaboration], Spin-3/2 nucleon and delta baryons in lattice QCD. Phys. Rev. D 68, 054506 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Oettel M., Pichowsky M., von Smekal L.: Current conservation in the covariant quark–diquark model of the nucleon. Eur. Phys. J. A 8, 251 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Ramalho G., Pena M.T., Gross F.: Electromagnetic form factors of the delta with D-waves. Phys. Rev. D 81, 113011 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Buchmann A.J., Hester J.A., Lebed R.F.: Quadrupole moments of N and Delta in the 1/N(c) expansion. Phys. Rev. D 66, 056002 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Ramalho G., Pena M.T., Gross F.: Electric quadrupole and magnetic octupole moments of the Delta. Phys. Lett. B 678, 355 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Nicmorus
    • 1
    • 2
  • G. Eichmann
    • 3
  • A. Krassnigg
    • 4
  • R. Alkofer
    • 4
  1. 1.Frankfurt Institute for Advanced Studies (FIAS)Johann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  3. 3.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Institut für PhysikKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations