Few-Body Systems

, Volume 50, Issue 1–4, pp 207–209 | Cite as

Charm Mass Determination from QCD Sum Rules: A Revision of the Classical Method

  • V. MateuEmail author
  • A. H. Hoang
  • B. Dehnadi
  • S. M. Zebarjad


In this work we take a revised look at the charm quark mass determination from QCD sum rules analyses. On the theoretical side we use the most up to date calculations (amounting to up \({O(\alpha_s^3)}\) expressions) and on the experimental side, to our knowledge, the most complete data set (maximum coverage of the energy spectrum). We reconsider the estimate of perturbative uncertainties (due to truncation of the series in α s ) proposing four alternative methods (equivalent in perturbation theory) to determine the \({\rm{\overline{MS}}}\) charm quark mass. We also use a very robust method to combine data from different experiments when systematic correlated errors are mainly due to normalization. This allows to use experimental data up to 10.5GeV, and to quantify statistic and systematic experimental errors in a meaningful way.


Heavy Quark Charm Quark Mass Bottom Quark Masse Perturbative Uncertainty Total Hadronic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonelli M. et al.: Flavor physics in the quark sector. Phys. Rep. 494, 197 (2010)CrossRefADSGoogle Scholar
  2. 2.
    Novikov V.A., Okun L.B., Shifman M.A., Vainshtein A.I., Voloshin M.B., Zakharov V.I.: Charmonium and gluons: basic experimental facts and theoretical introduction. Phys. Rep. 41, 1 (1978)CrossRefADSGoogle Scholar
  3. 3.
    Kallen A.O.G., Sabry A.: Fourth order vacuum polarization. Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N17, 1 (1955)Google Scholar
  4. 4.
    Boughezal R., Czakon M., Schutzmeier T.: Four-loop tadpoles: applications in QCD. Nucl. Phys. Proc. Suppl. 160, 160 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Maier A., Maierhofer P., Marquard P.: Higher moments of heavy quark correlators in the low energy limit at \({O(\alpha_s^2)}\). Nucl. Phys. B 797, 218 (2008)CrossRefzbMATHADSGoogle Scholar
  6. 6.
    Chetyrkin K.G., Kuhn J.H., Sturm C.: Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD. Eur. Phys. J. C 48, 107 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Boughezal R., Czakon M., Schutzmeier T.: Charm and bottom quark masses from perturbative QCD. Phys. Rev. D 74, 074006 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Maier A., Maierhofer P., Marquard P.: The second physical moment of the heavy quark vector correlator at \({O(\alpha_s^3)}\). Phys. Lett. B 669, 88 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Maier A., Maierhofer P., Marquard P., Smirnov A.V.: Low energy moments of heavy quark current correlators at four loops. Nucl. Phys. B 824, 1 (2010)CrossRefzbMATHADSGoogle Scholar
  10. 10.
    Hoang A.H., Mateu V., Mohammad Zebarjad S.: Heavy quark vacuum polarization function at \({O(\alpha_s^2)}\) and \({O(\alpha_s^3)}\). Nucl. Phys. B 813, 349 (2009)CrossRefzbMATHADSGoogle Scholar
  11. 11.
    Kiyo Y., Maier A., Maierhofer P., Marquard P.: Reconstruction of heavy quark current correlators at \({O(\alpha_s^3)}\). Nucl. Phys. B 823, 269 (2009)CrossRefzbMATHADSGoogle Scholar
  12. 12.
    Greynat D., Peris S.: Resummation of threshold, low- and high-energy expansions for heavy-quark correlators. Phys. Rev. D 82, 034030 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Chetyrkin K.G., Kuhn J.H., Maier A., Maierhofer P., Marquard P., Steinhauser M., Sturm C.: Charm and bottom quark masses: an update. Phys. Rev. D 80, 074010 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Kuhn J.H., Steinhauser M., Sturm C.: Heavy quark masses from sum rules in fourloop approximation. Nucl. Phys. B 778, 192 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Hagiwara K., Martin A.D., Nomura D., Teubner T.: Predictions for g-2 of the muon and \({\alpha_{\rm QED}(M_Z^2)}\). Phys. Rev. D 69, 093003 (2004)CrossRefADSGoogle Scholar
  16. 16.
    D’Agostini G.: On the use of the covariance matrix to fit correlated data. Nucl. Instrum. Methods A 346, 306 (1994)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • V. Mateu
    • 1
    Email author
  • A. H. Hoang
    • 2
  • B. Dehnadi
    • 3
  • S. M. Zebarjad
    • 3
  1. 1.Max-Plank-Institute for PhysicsMünichGermany
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Physics DepartmentShiraz UniversityShirazIran

Personalised recommendations