Few-Body Systems

, Volume 49, Issue 1–4, pp 223–231 | Cite as

Solving the BSE with an Integral Representation in Minkowski Space

  • Vladimir SauliEmail author


Special method of solution of BSE in Minkowski space is presented. Perturbation theory integral representation is introduced for BSE and the applicability is discussed beyond the simplest kernel and constituent propagator approximation.


Minkowski Space Vertex Function Electromagnetic Form Factor Dyson Equation Wick Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salpeter, E.E.: Bethe–Salpeter equation—the origins. arXiv:0811.1050Google Scholar
  2. 2.
    Krassnigg A.: Survey of J=0,1 mesons in a Bethe–Salpeter approach. arXiv:0909.4016Google Scholar
  3. 3.
    Chang L., Roberts C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Hoell A., Krassnigg A., Maris P., Roberts C.D., Wright S.V.: Electromagnetic properties of ground and excited state pseudoscalar mesons. Phys. Rev. C 71, 065204 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Doff, A., Natale, A.A., da Silva, P.S.R.: Light composite Higgs boson from the normalized Bethe–Salpeter equation. arXiv:0905.2981Google Scholar
  6. 6.
    Kurachi M., Shrock R.: Study of the change from walking to non-walking Behavior in a vectorial gauge theory as a function of Nf. JHEP 0612, 034 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Harada, M., Kurachi, M., Yamawaki, K.: pi +pi 0 mass difference and S parameter in the large N f QCD, Prog. Theor. Phys. 115 (2006)Google Scholar
  8. 8.
    Kaptari L.P. et al.: Bethe–Salpeter amplitudes and static properties of the Deuteron. Phys. Rev. C 54, 986 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Bondarenko S. et al.: The relativistic impulse approximation for the exclusive electrodisintegration of the deuteron. Phys. Atom. Nucl. 70, 2054 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Adam J. et al.: Covariant description of inelastic electron–deuteron scattering: predictions of the relativistic impulse approximation. Phys. Rev. C 66, 044003 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Nakanishi, N.: Graph theory and Feynman integrals (1971)Google Scholar
  12. 12.
    Sauli V.: Implications of analyticity to solution of Schwinger–Dyson equations in Minkowski space. Few. Body. Syst. 39, 45 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Kusaka, K., Simpson, K., Williams, A.G.: Solving the Bethe–Salpeter equation for bound states of scalar theories in Minkowski space. Phys. Rev. D 56, (1997)Google Scholar
  14. 14.
    Sauli, V., Adam, J.: Study of relativistic bound states for scalar theories in Bethe–Salpeter and Dyson–Schwinger formalism. Phys. Rev. D 67 (2003)Google Scholar
  15. 15.
    Alkofer R., Ahlig S.: (In-)Consistencies in the relativistic description of excited states in the Bethe–Salpeter equation. Ann. Phys. 275, 113 (1999)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Barro-BergflÃűdt K., Rosenfelder R., Stingl M.: Variational worldline approximation for the relativistic two-body bound state in a scalar model. Few. Body. Syst. 39, 193 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Sauli, V.: Higgsonium in singlet extension of standard model. arXiv:0808.1894Google Scholar
  18. 18.
    Sauli, V.: Spectrum of Higgsonium in the SM and beyond, AIPConf. Proc. 1030, 274, (2008). arXiv:0806.3454Google Scholar
  19. 19.
    Rupp G.: Heavy higgs bound state and bootstrap. Phys. Lett. B 288, 99 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Sauli, V.: Solving the Bethe–Salpeter equation for a pseudoscalar meson in Minkowski space, J. Phys. G 35, (2008)Google Scholar
  21. 21.
    Jain P., Munczek H.J.: \({q\bar q}\) bound states in the Bethe–Salpeter formalism. Phys. Rev. D 48, 5403 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    Binosi D., Papavassiliou J.: Pinch technique: theory and applications. Phys. Rep. 479, 1–6 (2009)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Carbonell J., Karmanov V.A.: Cross-ladder effects in Bethe–Salpeter and light-front equations. Eur. Phys. J. A 27, 11 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Karmanov V.A., Carbonell J., Mangin-Brinet M.: Electromagnetic form factor via Minkowski and Euclidean Bethe– Salpeter amplitudes. Few. Body. Syst. 44, 283 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Bicudo, P., Sauli, V.: In preparationGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.CFTP ISTLisbonPortugal
  2. 2.OTF UJFPragueCzech Republic

Personalised recommendations