Advertisement

Few-Body Systems

, Volume 46, Issue 3, pp 139–171 | Cite as

Low-Energy Universality in Atomic and Nuclear Physics

  • Lucas Platter
Review Article

Abstract

An effective field theory developed for systems interacting through short-range interactions can be applied to systems of cold atoms with a large scattering length and to nucleons at low energies. It is therefore the ideal tool to analyze the universal properties associated with the Efimov effect in three- and four-body systems. In this progress report, we will discuss recent results obtained within this framework and report on progress regarding the inclusion of higher order corrections associated with the finite range of the underlying interaction.

Keywords

Scattering Length Halo Nucleus Feshbach Resonance Naive Dimensional Analysis Triton Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Efimov V.: Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. 33, 563 (1970)Google Scholar
  2. 2.
    Braaten E., Hammer H.W.: Universality in few-body systems with large scattering length. Phys. Rept. 428, 259 (2006) [arXiv:cond-mat/0410417]CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Braaten, E., Hammer, H.W.: Efimov Physics in Cold Atoms. Annals Phys. 322, 120 (2007) [arXiv:cond-mat/0612123]Google Scholar
  4. 4.
    Bedaque, P.F., van Kolck, U.: Effective field theory for few nucleon systems. Ann. Rev. Nucl. Part. Sci. 52, 339 (2002) [arXiv:nucl-th/0203055]Google Scholar
  5. 5.
    Epelbaum, E., Hammer, H.W., Meißner, U.G.: Modern Theory of Nuclear Forces. arXiv:0811.1338 [nucl-th]Google Scholar
  6. 6.
    Kaplan, D.B.: Five lectures on effective field theory. arXiv:nucl-th/0510023Google Scholar
  7. 7.
    Lepage, G.P.: How to renormalize the Schrodinger equation. arXiv:nucl-th/9706029Google Scholar
  8. 8.
    Polchinski, J.: Effective field theory and the Fermi surface. arXiv:hep-th/9210046Google Scholar
  9. 9.
    Phillips, D.R.: Building light nuclei from neutrons, protons, and pions. Czech. J. Phys. 52, B49 (2002) [arXiv:nucl-th/0203040]Google Scholar
  10. 10.
    van Kolck, U.: Effective field theory of short range forces. Nucl. Phys. A 645, 273 (1999) [arXiv:nucl-th/9808007]Google Scholar
  11. 11.
    Kaplan, D.B., Savage, M.J., Wise, M.B.: A New expansion for nucleon-nucleon interactions. Phys. Lett. B 424, 390 (1998) [arXiv:nucl-th/9801034]Google Scholar
  12. 12.
    Kaplan, D.B., Savage, M.J., Wise, M.B.: Two nucleon systems from effective field theory. Nucl. Phys. B 534, 329 (1998) [arXiv:nucl-th/9802075]Google Scholar
  13. 13.
    Gegelia J.: EFT and NN Scattering. Phys. Lett. B 429, 227 (1998)CrossRefADSGoogle Scholar
  14. 14.
    Birse, M.C., McGovern, J.A., Richardson, K.G.: A Renormalization group treatment of two-body scattering. PiN Newslett. 15, 280 (1999) [arXiv:nucl-th/9911048]Google Scholar
  15. 15.
    Hammer, H.W., Furnstahl, R.J.: Effective field theory for dilute Fermi systems. Nucl. Phys. A 678, 277 (2000) [arXiv:nucl-th/0004043]Google Scholar
  16. 16.
    Platter, L., Hammer, H.W., Meißner, U.-G.: Quasiparticle properties in effective field theory. Nucl. Phys. A 714, 250 (2003) [arXiv:nucl-th/0208057]Google Scholar
  17. 17.
    Bedaque, P.F., Hammer, H.W., van Kolck, U.: Renormalization of the three-body system with short range interactions. Phys. Rev. Lett. 82, 463 (1999) [arXiv:nucl-th/9809025]Google Scholar
  18. 18.
    Bedaque, P.F., Hammer, H.W., van Kolck, U.: The Three boson system with short range interactions. Nucl. Phys. A 646, 444 (1999) [arXiv:nucl-th/9811046]Google Scholar
  19. 19.
    Skorniakov G.V., Ter-Martirosian K.A.: Three Body Problem for Short Range Forces. 1. Scattering of Low Energy Neutrons by Deuterons. Sov. Phys. JETP 4, 648 (1957)MathSciNetGoogle Scholar
  20. 20.
    Danilov, G.S.: On The Three-Body Problem with Short-Range Forces. Sov. Phys. JETP 13, 349 (1961) [J. Exptl. Theoret. Phys. (USSR) 40, 498 (1961)]Google Scholar
  21. 21.
    Kharchenko, V.F.: Solution of the Skornyakov-Ter-Martirosian Equations for Three Nucleons with Cutoff at Large Momenta. Sov. J. Nucl. Phys. 16, 173 (1973) [Yad. Fiz. 16, 310 (1972)]Google Scholar
  22. 22.
    Nielsen E., Fedorov D.V., Jensen A.S., Garrido E.: The three-body problem with short-range interactions. Phys. Rep. 347, 373 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Wilson K.G.: Renormalization Group and Strong Interactions. Phys. Rev. D 3, 1818 (1971)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Efimov V.: Force-range correction in the three-body problem: Application to three-nucleon systems. Phys. Rev. C 44, 2303 (1991)CrossRefADSGoogle Scholar
  25. 25.
    Efimov V.: Effective interaction of three resonantly interacting particles and the force range. Phys. Rev. C 47, 1876 (1993)CrossRefADSGoogle Scholar
  26. 26.
    Hammer, H.W., Mehen, T.: Range corrections to doublet S wave neutron deuteron scattering. Phys. Lett. B 516, 353 (2001) [arXiv:nucl-th/0105072]Google Scholar
  27. 27.
    Platter, L., Ji, C., Phillips, D.R.: Range Corrections to Three-Body Observables near a Feshbach Resonance. Phys. Rev. A 79, 022702 (2009) [arXiv:0808.1230 [cond-mat.other]]Google Scholar
  28. 28.
    Thøgersen M., Fedorov D.V., Jensen A.S.: Universal properties of Efimov physics beyond the scattering length approximation. Phys. Rev. A 78, 020501 (2008)CrossRefADSGoogle Scholar
  29. 29.
    Ji, C., Phillips, D.R., Platter, L.: in preparationGoogle Scholar
  30. 30.
    Bedaque, P.F., Rupak, G., Griesshammer, H.W., Hammer, H.W.: Low-energy expansion in the three-body system to all orders and the triton channel. Nucl. Phys. A 714, 589 (2003) [arXiv:nucl-th/0207034]Google Scholar
  31. 31.
    Gabbiani, F.: Effective range in doublet S-wave neutron deuteron scattering. arXiv:nucl-th/0104088Google Scholar
  32. 32.
    Platter, L., Phillips, D.R.: The Three-Boson System at Next-To-Next-To-Leading Order. Few Body Syst. 40, 35 (2006) [arXiv:cond-mat/0604255]Google Scholar
  33. 33.
    Platter, L.: The Three-nucleon system at next-to-next-to-leading order. Phys. Rev. C 74, 037001 (2006) [arXiv:nucl-th/0606006]Google Scholar
  34. 34.
    Hammer, H.W., Phillips, D.R., Platter, L.: Pion-mass dependence of three-nucleon observables. Eur. Phys. J. A 32, 335 (2007) [arXiv:0704.3726 [nucl-th]]Google Scholar
  35. 35.
    Griesshammer, H.W.: Naive dimensional analysis for three-body forces without pions. Nucl. Phys. A 760, 110 (2005) [arXiv:nucl-th/0502039]Google Scholar
  36. 36.
    Gasaneo G., Macek J.H.: Hyperspherical adiabatic eigenvalues for zero-range potentials. J. Phys. B 35, 2239 (2002)CrossRefADSGoogle Scholar
  37. 37.
    Platter, L., Hammer, H.W., Meißner, U.G.: The Four boson system with short range interactions. Phys. Rev. A 70, 052101 (2004) [arXiv:cond-mat/0404313]Google Scholar
  38. 38.
    Glöckle W.: The quantum mechanical few-body problem. Springer, Heidelberg (1983)Google Scholar
  39. 39.
    Schmid E.W., Ziegelmann H.: The quantum mechanical three-body problem. Vieweg, Wiesbaden (1971)Google Scholar
  40. 40.
    Hammer, H.W., Platter, L.: Universal Properties of the Four-Body System with Large Scattering Length. Eur. Phys. J. A 32, 113 (2007) [arXiv:nucl-th/0610105]Google Scholar
  41. 41.
    Schöllkopf W., Toennies J.P.: The nondestructive detection of the helium dimer and trimer. J. Chem. Phys. 104, 1155 (1996)CrossRefADSGoogle Scholar
  42. 42.
    Roudnev V., Yakovlev S.: Investigation of 4He3 trimer on the base of Faddeev equations in configuration space. Chem. Phys. Lett. 328, 97 (2000)CrossRefADSGoogle Scholar
  43. 43.
    Roudnev V.: Ultra-low energy elastic scattering in a system of three He atoms. Chem. Phys. Lett. 367, 95 (2003)CrossRefADSGoogle Scholar
  44. 44.
    Motovilov A.K., Sandhas W., Sofianos S.A., Kolganova E.A.: Binding energies and scattering observables in the 4He3 atomic system. Eur. Phys. J. D 13, 33 (2001)CrossRefADSGoogle Scholar
  45. 45.
    Kolganova E.A., Motovilov A.K., Sandhas W.: Scattering length of the helium-atom-helium-dimer collision. Phys. Rev. A 70, 052711 (2004)CrossRefADSGoogle Scholar
  46. 46.
    Blume D., Greene C.H.: Monte Carlo hyperspherical description of helium cluster excited states. J. Chem. Phys. 112, 8053 (2000)CrossRefADSGoogle Scholar
  47. 47.
    Lewerenz M.: Structure and energetics of small helium clusters: Quantum simulations using a recent perturbational pair potential. J. Chem. Phys. 106, 4596 (1997)CrossRefADSGoogle Scholar
  48. 48.
    Nakaichi-Maeda S., Lim T.K.: Zero-energy scattering and bound states in the 4He trimer and tetramer. Phys. Rev. A 28, 692 (1983)CrossRefADSGoogle Scholar
  49. 49.
    von Stecher, J., D’Incao, J.P., Greene, C.H.: Four-body legacy of the Efimov effect. Nat. Phys. 5, 417–421 (2009) [arXiv:0810.3876]Google Scholar
  50. 50.
    Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nägerl H.-C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of cesium atoms. Nature 440, 315 (2006)CrossRefADSGoogle Scholar
  51. 51.
    Ottenstein, T.B., Lompe, T., Kohnen, M., Wenz, A.N., Jochim, S.: Collisional stability of a three-component degenerate Fermi gas. Phys. Rev. Lett. 101, 203202 (2008) [arXiv:0806.0587]Google Scholar
  52. 52.
    Huckans, J.H., Williams, J.R., Hazlett, E.L., Stites, R.W., O’Hara, K.M.: Three-body recombination in a three-state Fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009) [arXiv:0810.3288]Google Scholar
  53. 53.
    Zaccanti, M., Modugno, G., D’Erico, C., Farroti, M., Roati, G., Inguscio, M.: talk at DAMOP 2008, State College, Pennsylvania, USAGoogle Scholar
  54. 54.
    Thalhammer, G., Barontini, G., Catani, J., Rabatti, F., Weber, C., Simoni, A., Minardi, F., Inguscio, M.: Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture. arXiv:0903.0976Google Scholar
  55. 55.
    Ferlaino, F., Knoop, S., Berninger, M., Harm, W., D’Incao, J.P., Nägerl, H.-C., Grimm, R.: Evidence for Universal Four-Body States Tied to an Efimov Trimer. arXiv:0903.1276Google Scholar
  56. 56.
    Bedaque, P.F., Braaten, E., Hammer, H.W.: Three body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 85, 908 (2000) [arXiv:cond-mat/0002365]Google Scholar
  57. 57.
    Esry B.D., Greene C.H., Suno H.: Threshold laws for three-body recombination. Phys. Rev. A 65, 010705 (2001)CrossRefGoogle Scholar
  58. 58.
    Macek J.H., Ovchinnikov S., Gasaneo G.: Solution for boson-diboson elastic scattering at zero energy in the shape-independent model. Phys. Rev. A 72, 032709 (2005)CrossRefADSGoogle Scholar
  59. 59.
    Macek J.H., Ovchinnikov S., Gasaneo G.: Exact solution for three particles interacting via zero-range potentials. Phys. Rev. A 73, 032704 (2006)CrossRefADSGoogle Scholar
  60. 60.
    Petrov, D.: talk at the Workshop on Strongly Interacting Quantum Gases, Ohio State University, April (2005)Google Scholar
  61. 61.
    Nielsen E., Macek J.H.: Low-Energy Recombination of Identical Bosons by Three-Body Collisions. Phys. Rev. Lett. 83, 1566 (1999)CrossRefADSGoogle Scholar
  62. 62.
    Esry B.D., Greene C.H., Burke J.P.: Recombination of Three Atoms in the Ultracold Limit. Phys. Rev. Lett. 83, 1751 (1999)CrossRefADSGoogle Scholar
  63. 63.
    Braaten, E. Hammer, H.W.: Enhanced dimer deactivation in an atomic/molecular BEC. Phys. Rev. A 70, 042706 (2004) [arXiv:cond-mat/0303249]Google Scholar
  64. 64.
    Braaten, E., Hammer, H.W.: Three body recombination into deep bound states in a Bose gas with large scattering length. Phys. Rev. Lett. 87, 160407 (2001) [arXiv:cond-mat/0103331]Google Scholar
  65. 65.
    Efimov, V.: Low-Energy Properties Of Three Resonantly Interacting Particles. Sov. J. Nucl. Phys. 29, 546 (1979) [Yad. Fiz. 29, 1058 (1979)]Google Scholar
  66. 66.
    Braaten, E., Hammer, H.W., Kang, D., Platter, L.: Three-Body Recombination of Identical Bosons with a Large Positive Scattering Length at Nonzero Temperature. Phys. Rev. A 78, 043605 (2008) [arXiv:0801.1732 [cond-mat.other]]Google Scholar
  67. 67.
    Hammer, H.W., Lahde, T.A., Platter, L.: Effective range corrections to three-body recombination for atoms with large scattering length. Phys. Rev. A 75, 032715 (2007) [arXiv:cond-mat/0611769]Google Scholar
  68. 68.
    Braaten, E., Hammer, H.W., Kang, D., Platter, L.: Three-body Recombination of Fermionic Atoms with Large Scattering Lengths. arXiv:0811.3578 [cond-mat.other]Google Scholar
  69. 69.
    Naidon, P., Ueda, M.: A possible Efimov trimer state in 3-component lithium 6. arXiv:0811.4086Google Scholar
  70. 70.
    Schmidt, R., Floerchinger, S., Wetterich, C.: Three-body loss in lithium from functional renormalization. Phys. Rev. A 79, 053633 (2009) [arXiv:0812.1191]Google Scholar
  71. 71.
    Braaten, E., Hammer, H.W.: Resonant dimer relaxation in cold atoms with a large scattering length. Phys. Rev. A 75, 052710 (2007) [arXiv:cond-mat/0610116]Google Scholar
  72. 72.
    Helfrich, K., Hammer, H.W.: Resonant Atom-Dimer Relaxation in Ultracold Atoms. Europhys. Lett. 86, 53003 (2009) [arXiv:0902.3410 [cond-mat.other]]Google Scholar
  73. 73.
    Knoop, S., et al.: Observation of an Efimov-like resonance in ultracold atom-dimer scattering. Nat. Phys. 5, 227 (2009) [arXiv:0807.3306 [cond-mat]]Google Scholar
  74. 74.
    von Stecher, J., D’Incao, J.P., Greene, C.H.: Universal Four-Boson States in Ultracold Molecular Gases: Resonant Effects in Dimer-Dimer Collisions. Phys. Rev. Lett. 103, 033004 (2009) [arXiv:0903.3348]Google Scholar
  75. 75.
    Epelbaum, E.: Few-nucleon forces and systems in chiral effective field theory. Prog. Part. Nucl. Phys. 57, 654 (2006) [arXiv:nucl-th/0509032]Google Scholar
  76. 76.
    Kong, X., Ravndal, F.: Proton proton fusion in effective field theory. Phys. Rev. C 64, 044002 (2001) [arXiv:nucl-th/0004038]Google Scholar
  77. 77.
    Christlmeier, S., Griesshammer, H.W.: Pion-less Effective Field Theory on Low-Energy Deuteron Electro-Disintegration. Phys. Rev. C 77, 064001 (2008) [arXiv:0803.1307 [nucl-th]]Google Scholar
  78. 78.
    Arenhövel, H., Leidemann, W., Tomusiak, E.L.: General survey of polarization observables in deuteron electrodisintegration. Eur. Phys. J. A 23, 147 (2005) [arXiv:nucl-th/0407053]Google Scholar
  79. 79.
    Tamae T. et al.: Out-of-Plane Measurement of the D(e, ep) Coincidence Cross Section. Phys. Rev. Lett. 59, 2919 (1987)CrossRefADSGoogle Scholar
  80. 80.
    von Neumann-Cosel P. et al.: Deuteron Breakup in the 2H(e, ep) Reaction at Low Momentum Transfer and Close to Threshold. Phys. Rev. Lett. 88, 202304 (2002)CrossRefADSGoogle Scholar
  81. 81.
    Ryezayeva N. et al.: Measurement of the Reaction 2H(e, e′) at 180° Close to the Deuteron Breakup Threshold. Phys. Rev. Lett. 100, 172501 (2008)CrossRefADSGoogle Scholar
  82. 82.
    Ando, S.I.: \({pp \rightarrow pp \pi_0}\) near threshold in pionless effective theory. Eur. Phys. J. A 33, 185 (2007) [arXiv:0707.2157[nucl-th]]Google Scholar
  83. 83.
    Phillips, D.R., Schindler, M.R., Springer, R.P.: An Effective-field-theory analysis of low-energy parity-violation in nucleon-nucleon scattering. arXiv:0812.2073 [nucl-th]Google Scholar
  84. 84.
    Bedaque, P.F., Hammer, H.W., van Kolck, U.: Effective theory for neutron deuteron scattering: Energy dependence. Phys. Rev. C 58, 641 (1998) [arXiv:nucl-th/9802057]Google Scholar
  85. 85.
    Bedaque, P.F., Hammer, H.W., van Kolck, U.: Effective theory of the triton. Nucl. Phys. A 676, 357 (2000) [arXiv:nucl-th/9906032]Google Scholar
  86. 86.
    Platter, L., Hammer, H.W.: Universality in the triton charge form-factor. Nucl. Phys. A 766, 132 (2006) [arXiv:nucl-th/0509045]Google Scholar
  87. 87.
    Friar J.L., Gibson B.F., Tomusiak E.L., Payne G.L.: Configuration space Faddeev calculations. IV. Trinucleon charge density. Phys. Rev. C 24, 665 (1981)CrossRefADSGoogle Scholar
  88. 88.
    Friar J.L., Gibson B.F., Chen C.R., Payne G.L.: Scaling relations for triton ground-state observables. Phys. Lett. 161, 241 (1985)Google Scholar
  89. 89.
    Chen C.R., Payne G.L., Friar J.L., Gibson B.F.: Convergence of Faddeev partial-wave series for triton ground state. Phys. Rev. C 31, 2266 (1985)CrossRefADSGoogle Scholar
  90. 90.
    Sadeghi H., Bayegan S., Grießhammer H.W.: Effective field theory calculation of thermal energies and radiative capture cross-section. Phys. Lett. B 643, 263 (2006)CrossRefADSGoogle Scholar
  91. 91.
    Sadeghi H., Bayegan S.: \({Nd \rightarrow ^3}\) H γ with effective field theory. Nucl. Phys. A 753, 291 (2005)CrossRefADSGoogle Scholar
  92. 92.
    Rupak, G., Kong, X.W.: Quartet S-wave p d scattering in EFT. Nucl. Phys. A 717, 73 (2003) [arXiv:nucl-th/0108059]Google Scholar
  93. 93.
    Platter, L., Hammer, H.W., Meißner, U.G.: On the correlation between the binding energies of the triton and the alpha-particle. Phys. Lett. B 607, 254 (2005) [arXiv:nucl-th/0409040]Google Scholar
  94. 94.
    Nogga, A., Kamada, H., Glöckle, W.: Modern nuclear force predictions for the alpha particle. Phys. Rev. Lett. 85, 944 (2000) [arXiv:nucl-th/0004023]Google Scholar
  95. 95.
    Epelbaum, E., Kamada, H., Nogga, A., Witała, H., Glöckle, W., Meißner, U.-G.: The Three nucleon and four nucleon systems from chiral effective field theory. Phys. Rev. Lett. 86, 4787 (2001) [arXiv:nucl-th/0007057]Google Scholar
  96. 96.
    Epelbaum, E., Nogga, A., Glöckle, W., Kamada, H., Meißner, U.-G., Witała, H.: Three nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002) [arXiv:nucl-th/0208023]Google Scholar
  97. 97.
    Beck D.H. et al.: Tritium form factors at low q. Phys. Rev. C 30, 1403 (1984)CrossRefADSGoogle Scholar
  98. 98.
    Beck D. et al.: Isoscalar and isovector form factors of 3H and 3He for Q below 2.9 fm−1 from electron-scattering measurements. Phys. Rev. Lett. 59, 1537 (1987)CrossRefADSGoogle Scholar
  99. 99.
    Nogga, A., Bogner, S.K., Schwenk, A.: Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002 (2004) [arXiv:nucl-th/0405016]Google Scholar
  100. 100.
    Stetcu, I., Barrett, B.R., van Kolck, U.: No-core shell model in an effective-field-theory framework. Phys. Lett. B 653, 358 (2007) [arXiv:nucl-th/0609023]Google Scholar
  101. 101.
    Bacca, S., Schwenk, A., Hagen, G., Papenbrock, T.: Helium halo nuclei from low-momentum interactions. arXiv:0902.1696 [nucl-th]Google Scholar
  102. 102.
    Riisager K.: Nuclear halo states. Rev. Mod. Phys. 66, 1105 (1994)CrossRefADSGoogle Scholar
  103. 103.
    Zhukov M.V., Danilin B.V., Fedorov D.V., Bang J.M., Thompson I.J., Vaagen J.S.: Bound state properties of Borromean Halo nuclei: He-6 and Li-11. Phys. Rep. 231, 151 (1993)CrossRefADSGoogle Scholar
  104. 104.
    Hansen P.G., Jensen A.S., Jonson B.: Nuclear halos. Ann. Rev. Nucl. Part. Sci. 45, 591 (1995)CrossRefADSGoogle Scholar
  105. 105.
    Tanihata I.: Neutron halo nuclei. J. Phys. G 22, 157 (1996)CrossRefADSGoogle Scholar
  106. 106.
    Jensen A.S., Riisager K., Fedorov D.V., Garrido E.: Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215 (2004)CrossRefADSGoogle Scholar
  107. 107.
    Yamashita M.T., Frederico T., Tomio L.: Trajectory of neutron-neutron-18C excited three-body state. Phys. Lett. B 660, 339 (2008)CrossRefADSGoogle Scholar
  108. 108.
    Yamashita, M.T., Frederico, T., Tomio, L.: Neutron-19C scattering near an Efimov state. Phys. Lett. B 670, 49 (2008) [arXiv:0808.3113 [nucl-th]]Google Scholar
  109. 109.
    Bertulani, C.A., Hammer, H.W., Van Kolck, U.: Effective field theory for halo nuclei. Nucl. Phys. A 712, 37 (2002) [arXiv:nucl-th/0205063]Google Scholar
  110. 110.
    Bedaque, P.F., Hammer, H.W., van Kolck, U.: Narrow resonances in effective field theory. Phys. Lett. B 569, 159 (2003) [arXiv:nucl-th/0304007]Google Scholar
  111. 111.
    Higa, R., Hammer, H.W., van Kolck, U.: alpha alpha Scattering in Halo Effective Field Theory. Nucl. Phys. A 809, 171 (2008) [arXiv:0802.3426 [nucl-th]]Google Scholar
  112. 112.
    Canham, D.L., Hammer, H.W.: Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367 (2008) [ar-Xiv:0807.3258 [nucl-th]]Google Scholar
  113. 113.
    TUNL nuclear data evaluation project, http://www.tunl.duke.edu/NuclData/
  114. 114.
    Kirscher, J., Griesshammer, H.W., Shukla, D., Hofmann, H.M.: Universality in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons. arXiv:0903.5538 [nucl-th]Google Scholar
  115. 115.
    Deltuva, A., Fonseca, A.C.: Four-nucleon scattering: Ab initio calculations in momentum space. Phys. Rev. C 75, 014005 (2007) [arXiv:nucl-th/0611029]Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of PhysicsOhio State UniversityColumbusUSA

Personalised recommendations