Few-Body Systems

, Volume 46, Issue 1, pp 1–36 | Cite as

Survey of Nucleon Electromagnetic Form Factors

  • I. C. Cloët
  • G. Eichmann
  • B. El-Bennich
  • T. Klähn
  • C. D. Roberts


A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincaré covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; namely, a diquark charge radius. It is argued to be commensurate with the pion’s charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: \({r_1^{n,u} > r_1^{n,d}}\) , owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhagwat M.S., Krassnigg A., Maris P., Roberts C.D.: Mind the gap. Eur. Phys. J. A 31, 630 (2007)CrossRefADSGoogle Scholar
  2. 2.
    Cloët, I.C., Krassnigg, A., Roberts, C.D.: Dynamics, symmetries and Hadron properties. arXiv:0710.5746 [nucl-th]Google Scholar
  3. 3.
    Lane K.D.: Asymptotic freedom and Goldstone realization of chiral symmetry. Phys. Rev. D 10, 2605 (1974)CrossRefADSGoogle Scholar
  4. 4.
    Politzer H.D.: Effective quark masses in the chiral limit. Nucl. Phys. B 117, 397 (1976)CrossRefADSGoogle Scholar
  5. 5.
    Roberts C.D., Williams A.G.: Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Zhang J.B., Bowman P.O., Coad R.J., Heller U.M., Leinweber D.B., Williams A.G.: Quark propagator in Landau and Laplacian gauges with overlap fermions. Phys. Rev. D 71, 014501 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Bhagwat M.S., Pichowsky M.A., Roberts C.D., Tandy P.C.: Analysis of a quenched lattice-QCD dressed-quark propagator. Phys. Rev. C 68, 015203 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Bhagwat M.S., Tandy P.C.: Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Bhagwat, M.S., Cloët, I.C., Roberts, C.D.: Covariance, dynamics and symmetries, and Hadron form factors. arXiv: 0710.2059 [nucl-th]Google Scholar
  10. 10.
    Bowman P.O. et al.: Scaling behavior and positivity violation of the gluon propagator in full QCD. Phys. Rev. D 76, 094505 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Roberts C.D.: Electromagnetic pion form-factor and neutral pion decay width. Nucl. Phys. A 605, 475 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Arrington J., Roberts C.D., Zanotti J.M.: Nucleon electromagnetic form factors. J. Phys. G 34, S23 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Perdrisat C.F., Punjabi V., Vanderhaeghen M.: Nucleon electromagnetic form factors. Prog. Part. Nucl. Phys. 59, 694 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Roberts C.D.: Hadron properties and Dyson-Schwinger equations. Prog. Part. Nucl. Phys. 61, 50 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Munczek H.J.: Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter equations. Phys. Rev. D 52, 4736 (1995)CrossRefADSGoogle Scholar
  16. 16.
    Bender A., Roberts C.D., von Smekal L.: Goldstone theorem and diquark confinement beyond rainbow-ladder approximation. Phys. Lett. B 380, 7 (1996)CrossRefADSGoogle Scholar
  17. 17.
    Bender A., Detmold W., Roberts C.D., Thomas A.W.: Bethe-Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Bhagwat M.S., Höll A., Krassnigg A., Roberts C.D., Tandy P.C.: Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267 (1998)CrossRefADSGoogle Scholar
  20. 20.
    Maris P., Roberts C.D.: pi and K meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997)CrossRefADSGoogle Scholar
  21. 21.
    Höll A., Krassnigg A., Roberts C.D.: Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Höll A., Krassnigg A., Maris P., Roberts C.D., Wright S.V.: Electromagnetic properties of ground and excited state pseudoscalar. Phys. Rev. C 71, 065204 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Eichmann, G., Cloët, I.C., Alkofer, R., Krassnigg, A., Roberts, C.D.: Toward unifying the description of meson and Baryon properties. Phys. Rev. C 77 042202 (R) (2008)Google Scholar
  24. 24.
    Cahill R.T., Roberts C.D., Praschifka J.: BARYON STRUCTURE AND QCD. Austral. J. Phys. 42, 129 (1989)ADSGoogle Scholar
  25. 25.
    Cahill R.T., Roberts C.D., Praschifka J.: Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)CrossRefADSGoogle Scholar
  26. 26.
    Burden C.J., Qian L., Roberts C.D., Tandy P.C., Thomson M.J.: Ground-state spectrum of light-quark mesons. Phys. Rev. C 55, 2649 (1997)CrossRefADSGoogle Scholar
  27. 27.
    Maris P.: Effective masses of diquarks. Few Body Syst. 32, 41 (2002)CrossRefADSGoogle Scholar
  28. 28.
    Hecht M.B., Oettel M., Roberts C.D., Schmidt S.M., Tandy P.C., Thomas A.W.: Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Young R.D., Leinweber D.B., Thomas A.W., Wright S.V.: Chiral analysis of quenched baryon masses. Phys. Rev. D 66, 094507 (2002)CrossRefADSGoogle Scholar
  30. 30.
    Flambaum V.V., Höll A., Jaikumar P., Roberts C.D., Wright S.V.: Sigma terms of light-quark hadrons. Few Body Syst. 38, 31 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Alkofer R., Höll A., Kloker M., Krassnigg A., Roberts C.D.: On nucleon electromagnetic form factors. Few Body Syst. 37, 1 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Höll A., Alkofer R., Kloker M., Krassnigg A., Roberts C.D., Wright S.V.: On nucleon electromagnetic form factors: A precis. Nucl. Phys. A 755, 298 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Cloët I.C., Eichmann G., Flambaum V.V., Roberts C.D., Bhagwat M.S., Höll A.: Current quark mass dependence of nucleon magnetic moments and radii. Few Body Syst. 42, 91 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Thomas A.W.: The spin of the proton. Prog. Part. Nucl. Phys. 61, 219 (2008)CrossRefADSGoogle Scholar
  35. 35.
    Cloët I.C., Roberts C.D.: Form factors and Dyson-Schwinger equations. PoS LC2008, 047 (2008)Google Scholar
  36. 36.
    Oettel M., Pichowsky M., von Smekal L.: Current conservation in the covariant quark-diquark model of the nucleon. Eur. Phys. J. A 8, 251 (2000)CrossRefADSGoogle Scholar
  37. 37.
    Bloch J.C.R., Roberts C.D., Schmidt S.M., Bender A., Frank M.R.: Nucleon form factors and a nonpointlike diquark. Phys. Rev. C 60, 062201 (1999)CrossRefADSGoogle Scholar
  38. 38.
    Maris P.: Electromagnetic properties of diquarks. Few Body Syst. 35, 117 (2004)ADSGoogle Scholar
  39. 39.
    Maris P., Tandy P.C.: The pi, K+, and K0 electromagnetic form factors. Phys. Rev. C 62, 055204 (2000)CrossRefADSGoogle Scholar
  40. 40.
    Bhagwat M.S., Maris P.: “Vector meson form factors and their quark-mass dependence,” nucl-th/0612069. Phys. Rev. C 77, 025203 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Alexandrou C., de Forcrand Ph., Lucini B.: Evidence for diquarks in lattice QCD. Phys. Rev. Lett. 97, 222002 (2006)CrossRefADSGoogle Scholar
  42. 42.
    Miller G.A.: Charge Density of the Neutron. Phys. Rev. Lett. 99, 112001 (2007)CrossRefADSGoogle Scholar
  43. 43.
    Miller G.A., Arrington J.: The neutron negative central charge density: an inclusive-exclusive connection. Phys. Rev. C 78, 032201 (2008)CrossRefADSGoogle Scholar
  44. 44.
    Kelly J.J.: Simple parametrization of nucleon form factors. Phys. Rev. C 70, 068202 (2004)CrossRefADSGoogle Scholar
  45. 45.
    Oettel M., Hellstern G., Alkofer R., Reinhardt H.: Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C 58, 2459 (1998)CrossRefADSGoogle Scholar
  46. 46.
    Belitsky A.V., Ji X.-d., Yuan F.: A perturbative QCD analysis of the nucleon’s Pauli form factor F 2(Q 2). Phys. Rev. Lett. 91, 092003 (2003)CrossRefADSGoogle Scholar
  47. 47.
    Jones, M.K. et al.: (JLab Hall A Collaboration), G Ep/G Mp ratio by polarization transfer in epep. Phys. Rev. Lett. 84, 1398 (2000)Google Scholar
  48. 48.
    Gayou, O. et al.: (JLab Hall A Collaboration), Measurement of G Ep/G Mp in epep to Q 2 = 5.6GeV2. Phys. Rev. Lett. 88, 092301 (2002)Google Scholar
  49. 49.
    Yao W.M. et al.: (Particle data group), review of particle physics. J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  50. 50.
    Frank M.R., Jennings B.K., Miller G.A.: The Role of Color Neutrality in Nuclear Physics–Modifications of Nucleonic Wave Functions. Phys. Rev. C 54, 920 (1996)CrossRefADSGoogle Scholar
  51. 51.
    Bloch J.C.R., Krassnigg A., Roberts C.D.: Regarding proton form factors. Few Body Syst. 33, 219 (2003)CrossRefADSGoogle Scholar
  52. 52.
    Julia-Diaz, B., Riska, D.O., Coester, F.: Baryon form factors of relativistic constituent-quark models. Phys. Rev. C 69, 035212 (2004) [Erratum-ibid. C 75, 069902 (2007)]Google Scholar
  53. 53.
    Melde T., Berger K., Canton L., Plessas W., Wagenbrunn R.F.: Electromagnetic nucleon form factors in instant and point form. Phys. Rev. D 76, 074020 (2007)CrossRefADSGoogle Scholar
  54. 54.
    Mergell P., Meissner U.G., Drechsel D.: Dispersion theoretical analysis of the nucleon electromagnetic form-factors. Nucl. Phys. A 596, 367 (1996)CrossRefADSGoogle Scholar
  55. 55.
    Punjabi, V. et al.: Proton elastic form factor ratios to Q 2 = 3.5 GeV2 by polarization transfer. Phys. Rev. C 71, 055202 (2005) [Erratum-ibid. C 71, 069902 (2005)]Google Scholar
  56. 56.
    Qattan I.A. et al.: Precision Rosenbluth measurement of the proton elastic form factors. Phys. Rev. Lett. 94, 142301 (2005)CrossRefADSGoogle Scholar
  57. 57.
    Walker R.C. et al.: Measurements of the proton elastic form-factors for 1 (GeV/c)2Q 2 ≤ 3 (GeV/c)2 at SLAC. Phys. Rev. D 49, 5671 (1994)CrossRefADSGoogle Scholar
  58. 58.
    Madey, R. et al.: [E93-038 Collaboration], Measurements of G En/G Mn from the 2H(e, en)1 reaction to Q 2 = 1.45 (GeV/c)2. Phys. Rev. Lett. 91, 122002 (2003)Google Scholar
  59. 59.
    Hackett-Jones, E.J., Leinweber, D.B., Thomas, A.W.: Incorporating chiral symmetry in extrapolations of octet baryon magnetic moments. Phys. Lett. B 489, 143 (2000); Phys. Lett. B 494, 89 (2000)Google Scholar
  60. 60.
    Leinweber D.B., Thomas A.W., Young R.D.: Chiral symmetry and the intrinsic structure of the nucleon. Phys. Rev. Lett. 86, 5011 (2001)CrossRefADSGoogle Scholar
  61. 61.
    Kubis B., Meissner U.G.: Low energy analysis of the nucleon electromagnetic form factors. Nucl. Phys. A 679, 698 (2001)CrossRefADSGoogle Scholar
  62. 62.
    Alkofer R., Bender A., Roberts C.D.: Pion loop contribution to the electromagnetic pion charge radius. Int. J. Mod. Phys. A 10, 3319 (1995)CrossRefADSGoogle Scholar
  63. 63.
    Ashley J.D., Leinweber D.B., Thomas A.W., Young R.D.: Nucleon electromagnetic form factors from lattice QCD. Eur. Phys. J. A 19, 9 (2004)CrossRefADSGoogle Scholar
  64. 64.
    Wang P., Leinweber D.B., Thomas A.W., Young R.D.: Chiral extrapolation of nucleon magnetic form factors. Phys. Rev. D 75, 073012 (2007)CrossRefADSGoogle Scholar
  65. 65.
    Julia-Diaz B., Lee T.S., Sato T., Smith L.C.: Extraction and interpretation of γ N → Δ form factors within a dynamical model. Phys. Rev. C 75, 015205 (2007)CrossRefADSGoogle Scholar
  66. 66.
    Bhagwat M.S., Tandy P.C.: Quark-gluon vertex model and lattice-QCD data. Phys. Rev. D 70, 094039 (2004)CrossRefADSGoogle Scholar
  67. 67.
    Roberts C.D., Bhagwat M.S., Höll A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. ST 140, 53 (2007)Google Scholar
  68. 68.
    Burden C.J., Roberts C.D., Thomson M.J.: Electromagnetic from-factors of charged and neutral kaons. Phys. Lett. B 371, 163 (1996)CrossRefADSGoogle Scholar
  69. 69.
    Hecht M.B., Roberts C.D., Schmidt S.M.: Valence-quark distributions in the pion. Phys. Rev. C 63, 025213 (2001)CrossRefADSGoogle Scholar
  70. 70.
    Langfeld K., Markum H., Pullirsch R., Roberts C.D., Schmidt S.M.: Concerning the quark condensate. Phys. Rev. C 67, 065206 (2003)CrossRefADSGoogle Scholar
  71. 71.
    Chang L., Liu Y.X., Bhagwat M.S., Roberts C.D., Wright S.V.: Dynamical chiral symmetry breaking and a critical mass. Phys. Rev. C 75, 015201 (2007)CrossRefADSGoogle Scholar
  72. 72.
    Maris P., Tandy P.C.: Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)CrossRefADSGoogle Scholar
  73. 73.
    Maris P., Tandy P.C.: The quark photon vertex and the pion charge radius. Phys. Rev. C 61, 045202 (2000)CrossRefADSGoogle Scholar
  74. 74.
    Ball J.S., Chiu T.-W.: Analytic properties of the vertex fnction in Gauge theories. 1. Phys. Rev. D 22, 2542 (1980)CrossRefADSGoogle Scholar
  75. 75.
    Frank M.R., Tandy P.C.: Gauge invariance and the electromagnetic current of composite pions. Phys. Rev. C 49, 478 (1994)CrossRefADSGoogle Scholar
  76. 76.
    Hawes F.T., Pichowsky M.A.: Electromagnetic form factors of light vector mesons. Phys. Rev. C 59, 1743 (1999)CrossRefADSGoogle Scholar
  77. 77.
    Salam A., Delbourgo R.: Renormalizable Electrodynamics Of Scalar And Vector Mesons. Ii. Phys. Rev. 135, B1398 (1964)CrossRefADSMathSciNetGoogle Scholar
  78. 78.
    Brodsky S.J., Hiller J.R.: Universal properties of the electromagnetic interactions of spin one systems. Phys. Rev. D 46, 2141 (1992)CrossRefADSGoogle Scholar
  79. 79.
    Maris P., Tandy P.C.: Electromagnetic transition form factors of light mesons. Phys. Rev. C 65, 045211 (2002)CrossRefADSGoogle Scholar
  80. 80.
    Oettel M., Alkofer R., von Smekal L.: Nucleon properties in the covariant quark diquark model. Eur. Phys. J. A 8, 553 (2000)CrossRefADSGoogle Scholar
  81. 81.
    Cotanch, S.R., Maris, P.: QCD based quark description of π π scattering up to the σ and ρ region. Phys. Rev. D 66, 116010 (2002); Ladder Dyson-Schwinger calculation of the anomalous gamma 3π form factor. Phys. Rev. D 68, 036006 (2003)Google Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • I. C. Cloët
    • 1
    • 2
  • G. Eichmann
    • 1
    • 3
  • B. El-Bennich
    • 1
  • T. Klähn
    • 1
  • C. D. Roberts
    • 1
    • 4
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of PhysicsUniversity of WashingtonSeattleUSA
  3. 3.Institut für PhysikKarl-Franzens-Universität GrazGrazAustria
  4. 4.School of PhysicsThe University of New South WalesSydneyAustralia

Personalised recommendations