Few-Body Systems

, Volume 46, Issue 1, pp 1–36 | Cite as

Survey of Nucleon Electromagnetic Form Factors

  • I. C. Cloët
  • G. Eichmann
  • B. El-Bennich
  • T. Klähn
  • C. D. Roberts


A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincaré covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; namely, a diquark charge radius. It is argued to be commensurate with the pion’s charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: \({r_1^{n,u} > r_1^{n,d}}\) , owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.


Form Factor Faddeev Equation Magnetic Form Factor Dynamical Chiral Symmetry Breaking Pauli Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhagwat M.S., Krassnigg A., Maris P., Roberts C.D.: Mind the gap. Eur. Phys. J. A 31, 630 (2007)CrossRefADSGoogle Scholar
  2. 2.
    Cloët, I.C., Krassnigg, A., Roberts, C.D.: Dynamics, symmetries and Hadron properties. arXiv:0710.5746 [nucl-th]Google Scholar
  3. 3.
    Lane K.D.: Asymptotic freedom and Goldstone realization of chiral symmetry. Phys. Rev. D 10, 2605 (1974)CrossRefADSGoogle Scholar
  4. 4.
    Politzer H.D.: Effective quark masses in the chiral limit. Nucl. Phys. B 117, 397 (1976)CrossRefADSGoogle Scholar
  5. 5.
    Roberts C.D., Williams A.G.: Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Zhang J.B., Bowman P.O., Coad R.J., Heller U.M., Leinweber D.B., Williams A.G.: Quark propagator in Landau and Laplacian gauges with overlap fermions. Phys. Rev. D 71, 014501 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Bhagwat M.S., Pichowsky M.A., Roberts C.D., Tandy P.C.: Analysis of a quenched lattice-QCD dressed-quark propagator. Phys. Rev. C 68, 015203 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Bhagwat M.S., Tandy P.C.: Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Bhagwat, M.S., Cloët, I.C., Roberts, C.D.: Covariance, dynamics and symmetries, and Hadron form factors. arXiv: 0710.2059 [nucl-th]Google Scholar
  10. 10.
    Bowman P.O. et al.: Scaling behavior and positivity violation of the gluon propagator in full QCD. Phys. Rev. D 76, 094505 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Roberts C.D.: Electromagnetic pion form-factor and neutral pion decay width. Nucl. Phys. A 605, 475 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Arrington J., Roberts C.D., Zanotti J.M.: Nucleon electromagnetic form factors. J. Phys. G 34, S23 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Perdrisat C.F., Punjabi V., Vanderhaeghen M.: Nucleon electromagnetic form factors. Prog. Part. Nucl. Phys. 59, 694 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Roberts C.D.: Hadron properties and Dyson-Schwinger equations. Prog. Part. Nucl. Phys. 61, 50 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Munczek H.J.: Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter equations. Phys. Rev. D 52, 4736 (1995)CrossRefADSGoogle Scholar
  16. 16.
    Bender A., Roberts C.D., von Smekal L.: Goldstone theorem and diquark confinement beyond rainbow-ladder approximation. Phys. Lett. B 380, 7 (1996)CrossRefADSGoogle Scholar
  17. 17.
    Bender A., Detmold W., Roberts C.D., Thomas A.W.: Bethe-Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Bhagwat M.S., Höll A., Krassnigg A., Roberts C.D., Tandy P.C.: Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267 (1998)CrossRefADSGoogle Scholar
  20. 20.
    Maris P., Roberts C.D.: pi and K meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997)CrossRefADSGoogle Scholar
  21. 21.
    Höll A., Krassnigg A., Roberts C.D.: Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Höll A., Krassnigg A., Maris P., Roberts C.D., Wright S.V.: Electromagnetic properties of ground and excited state pseudoscalar. Phys. Rev. C 71, 065204 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Eichmann, G., Cloët, I.C., Alkofer, R., Krassnigg, A., Roberts, C.D.: Toward unifying the description of meson and Baryon properties. Phys. Rev. C 77 042202 (R) (2008)Google Scholar
  24. 24.
    Cahill R.T., Roberts C.D., Praschifka J.: BARYON STRUCTURE AND QCD. Austral. J. Phys. 42, 129 (1989)ADSGoogle Scholar
  25. 25.
    Cahill R.T., Roberts C.D., Praschifka J.: Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)CrossRefADSGoogle Scholar
  26. 26.
    Burden C.J., Qian L., Roberts C.D., Tandy P.C., Thomson M.J.: Ground-state spectrum of light-quark mesons. Phys. Rev. C 55, 2649 (1997)CrossRefADSGoogle Scholar
  27. 27.
    Maris P.: Effective masses of diquarks. Few Body Syst. 32, 41 (2002)CrossRefADSGoogle Scholar
  28. 28.
    Hecht M.B., Oettel M., Roberts C.D., Schmidt S.M., Tandy P.C., Thomas A.W.: Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Young R.D., Leinweber D.B., Thomas A.W., Wright S.V.: Chiral analysis of quenched baryon masses. Phys. Rev. D 66, 094507 (2002)CrossRefADSGoogle Scholar
  30. 30.
    Flambaum V.V., Höll A., Jaikumar P., Roberts C.D., Wright S.V.: Sigma terms of light-quark hadrons. Few Body Syst. 38, 31 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Alkofer R., Höll A., Kloker M., Krassnigg A., Roberts C.D.: On nucleon electromagnetic form factors. Few Body Syst. 37, 1 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Höll A., Alkofer R., Kloker M., Krassnigg A., Roberts C.D., Wright S.V.: On nucleon electromagnetic form factors: A precis. Nucl. Phys. A 755, 298 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Cloët I.C., Eichmann G., Flambaum V.V., Roberts C.D., Bhagwat M.S., Höll A.: Current quark mass dependence of nucleon magnetic moments and radii. Few Body Syst. 42, 91 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Thomas A.W.: The spin of the proton. Prog. Part. Nucl. Phys. 61, 219 (2008)CrossRefADSGoogle Scholar
  35. 35.
    Cloët I.C., Roberts C.D.: Form factors and Dyson-Schwinger equations. PoS LC2008, 047 (2008)Google Scholar
  36. 36.
    Oettel M., Pichowsky M., von Smekal L.: Current conservation in the covariant quark-diquark model of the nucleon. Eur. Phys. J. A 8, 251 (2000)CrossRefADSGoogle Scholar
  37. 37.
    Bloch J.C.R., Roberts C.D., Schmidt S.M., Bender A., Frank M.R.: Nucleon form factors and a nonpointlike diquark. Phys. Rev. C 60, 062201 (1999)CrossRefADSGoogle Scholar
  38. 38.
    Maris P.: Electromagnetic properties of diquarks. Few Body Syst. 35, 117 (2004)ADSGoogle Scholar
  39. 39.
    Maris P., Tandy P.C.: The pi, K+, and K0 electromagnetic form factors. Phys. Rev. C 62, 055204 (2000)CrossRefADSGoogle Scholar
  40. 40.
    Bhagwat M.S., Maris P.: “Vector meson form factors and their quark-mass dependence,” nucl-th/0612069. Phys. Rev. C 77, 025203 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Alexandrou C., de Forcrand Ph., Lucini B.: Evidence for diquarks in lattice QCD. Phys. Rev. Lett. 97, 222002 (2006)CrossRefADSGoogle Scholar
  42. 42.
    Miller G.A.: Charge Density of the Neutron. Phys. Rev. Lett. 99, 112001 (2007)CrossRefADSGoogle Scholar
  43. 43.
    Miller G.A., Arrington J.: The neutron negative central charge density: an inclusive-exclusive connection. Phys. Rev. C 78, 032201 (2008)CrossRefADSGoogle Scholar
  44. 44.
    Kelly J.J.: Simple parametrization of nucleon form factors. Phys. Rev. C 70, 068202 (2004)CrossRefADSGoogle Scholar
  45. 45.
    Oettel M., Hellstern G., Alkofer R., Reinhardt H.: Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C 58, 2459 (1998)CrossRefADSGoogle Scholar
  46. 46.
    Belitsky A.V., Ji X.-d., Yuan F.: A perturbative QCD analysis of the nucleon’s Pauli form factor F 2(Q 2). Phys. Rev. Lett. 91, 092003 (2003)CrossRefADSGoogle Scholar
  47. 47.
    Jones, M.K. et al.: (JLab Hall A Collaboration), G Ep/G Mp ratio by polarization transfer in epep. Phys. Rev. Lett. 84, 1398 (2000)Google Scholar
  48. 48.
    Gayou, O. et al.: (JLab Hall A Collaboration), Measurement of G Ep/G Mp in epep to Q 2 = 5.6GeV2. Phys. Rev. Lett. 88, 092301 (2002)Google Scholar
  49. 49.
    Yao W.M. et al.: (Particle data group), review of particle physics. J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  50. 50.
    Frank M.R., Jennings B.K., Miller G.A.: The Role of Color Neutrality in Nuclear Physics–Modifications of Nucleonic Wave Functions. Phys. Rev. C 54, 920 (1996)CrossRefADSGoogle Scholar
  51. 51.
    Bloch J.C.R., Krassnigg A., Roberts C.D.: Regarding proton form factors. Few Body Syst. 33, 219 (2003)CrossRefADSGoogle Scholar
  52. 52.
    Julia-Diaz, B., Riska, D.O., Coester, F.: Baryon form factors of relativistic constituent-quark models. Phys. Rev. C 69, 035212 (2004) [Erratum-ibid. C 75, 069902 (2007)]Google Scholar
  53. 53.
    Melde T., Berger K., Canton L., Plessas W., Wagenbrunn R.F.: Electromagnetic nucleon form factors in instant and point form. Phys. Rev. D 76, 074020 (2007)CrossRefADSGoogle Scholar
  54. 54.
    Mergell P., Meissner U.G., Drechsel D.: Dispersion theoretical analysis of the nucleon electromagnetic form-factors. Nucl. Phys. A 596, 367 (1996)CrossRefADSGoogle Scholar
  55. 55.
    Punjabi, V. et al.: Proton elastic form factor ratios to Q 2 = 3.5 GeV2 by polarization transfer. Phys. Rev. C 71, 055202 (2005) [Erratum-ibid. C 71, 069902 (2005)]Google Scholar
  56. 56.
    Qattan I.A. et al.: Precision Rosenbluth measurement of the proton elastic form factors. Phys. Rev. Lett. 94, 142301 (2005)CrossRefADSGoogle Scholar
  57. 57.
    Walker R.C. et al.: Measurements of the proton elastic form-factors for 1 (GeV/c)2Q 2 ≤ 3 (GeV/c)2 at SLAC. Phys. Rev. D 49, 5671 (1994)CrossRefADSGoogle Scholar
  58. 58.
    Madey, R. et al.: [E93-038 Collaboration], Measurements of G En/G Mn from the 2H(e, en)1 reaction to Q 2 = 1.45 (GeV/c)2. Phys. Rev. Lett. 91, 122002 (2003)Google Scholar
  59. 59.
    Hackett-Jones, E.J., Leinweber, D.B., Thomas, A.W.: Incorporating chiral symmetry in extrapolations of octet baryon magnetic moments. Phys. Lett. B 489, 143 (2000); Phys. Lett. B 494, 89 (2000)Google Scholar
  60. 60.
    Leinweber D.B., Thomas A.W., Young R.D.: Chiral symmetry and the intrinsic structure of the nucleon. Phys. Rev. Lett. 86, 5011 (2001)CrossRefADSGoogle Scholar
  61. 61.
    Kubis B., Meissner U.G.: Low energy analysis of the nucleon electromagnetic form factors. Nucl. Phys. A 679, 698 (2001)CrossRefADSGoogle Scholar
  62. 62.
    Alkofer R., Bender A., Roberts C.D.: Pion loop contribution to the electromagnetic pion charge radius. Int. J. Mod. Phys. A 10, 3319 (1995)CrossRefADSGoogle Scholar
  63. 63.
    Ashley J.D., Leinweber D.B., Thomas A.W., Young R.D.: Nucleon electromagnetic form factors from lattice QCD. Eur. Phys. J. A 19, 9 (2004)CrossRefADSGoogle Scholar
  64. 64.
    Wang P., Leinweber D.B., Thomas A.W., Young R.D.: Chiral extrapolation of nucleon magnetic form factors. Phys. Rev. D 75, 073012 (2007)CrossRefADSGoogle Scholar
  65. 65.
    Julia-Diaz B., Lee T.S., Sato T., Smith L.C.: Extraction and interpretation of γ N → Δ form factors within a dynamical model. Phys. Rev. C 75, 015205 (2007)CrossRefADSGoogle Scholar
  66. 66.
    Bhagwat M.S., Tandy P.C.: Quark-gluon vertex model and lattice-QCD data. Phys. Rev. D 70, 094039 (2004)CrossRefADSGoogle Scholar
  67. 67.
    Roberts C.D., Bhagwat M.S., Höll A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. ST 140, 53 (2007)Google Scholar
  68. 68.
    Burden C.J., Roberts C.D., Thomson M.J.: Electromagnetic from-factors of charged and neutral kaons. Phys. Lett. B 371, 163 (1996)CrossRefADSGoogle Scholar
  69. 69.
    Hecht M.B., Roberts C.D., Schmidt S.M.: Valence-quark distributions in the pion. Phys. Rev. C 63, 025213 (2001)CrossRefADSGoogle Scholar
  70. 70.
    Langfeld K., Markum H., Pullirsch R., Roberts C.D., Schmidt S.M.: Concerning the quark condensate. Phys. Rev. C 67, 065206 (2003)CrossRefADSGoogle Scholar
  71. 71.
    Chang L., Liu Y.X., Bhagwat M.S., Roberts C.D., Wright S.V.: Dynamical chiral symmetry breaking and a critical mass. Phys. Rev. C 75, 015201 (2007)CrossRefADSGoogle Scholar
  72. 72.
    Maris P., Tandy P.C.: Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)CrossRefADSGoogle Scholar
  73. 73.
    Maris P., Tandy P.C.: The quark photon vertex and the pion charge radius. Phys. Rev. C 61, 045202 (2000)CrossRefADSGoogle Scholar
  74. 74.
    Ball J.S., Chiu T.-W.: Analytic properties of the vertex fnction in Gauge theories. 1. Phys. Rev. D 22, 2542 (1980)CrossRefADSGoogle Scholar
  75. 75.
    Frank M.R., Tandy P.C.: Gauge invariance and the electromagnetic current of composite pions. Phys. Rev. C 49, 478 (1994)CrossRefADSGoogle Scholar
  76. 76.
    Hawes F.T., Pichowsky M.A.: Electromagnetic form factors of light vector mesons. Phys. Rev. C 59, 1743 (1999)CrossRefADSGoogle Scholar
  77. 77.
    Salam A., Delbourgo R.: Renormalizable Electrodynamics Of Scalar And Vector Mesons. Ii. Phys. Rev. 135, B1398 (1964)CrossRefADSMathSciNetGoogle Scholar
  78. 78.
    Brodsky S.J., Hiller J.R.: Universal properties of the electromagnetic interactions of spin one systems. Phys. Rev. D 46, 2141 (1992)CrossRefADSGoogle Scholar
  79. 79.
    Maris P., Tandy P.C.: Electromagnetic transition form factors of light mesons. Phys. Rev. C 65, 045211 (2002)CrossRefADSGoogle Scholar
  80. 80.
    Oettel M., Alkofer R., von Smekal L.: Nucleon properties in the covariant quark diquark model. Eur. Phys. J. A 8, 553 (2000)CrossRefADSGoogle Scholar
  81. 81.
    Cotanch, S.R., Maris, P.: QCD based quark description of π π scattering up to the σ and ρ region. Phys. Rev. D 66, 116010 (2002); Ladder Dyson-Schwinger calculation of the anomalous gamma 3π form factor. Phys. Rev. D 68, 036006 (2003)Google Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • I. C. Cloët
    • 1
    • 2
  • G. Eichmann
    • 1
    • 3
  • B. El-Bennich
    • 1
  • T. Klähn
    • 1
  • C. D. Roberts
    • 1
    • 4
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of PhysicsUniversity of WashingtonSeattleUSA
  3. 3.Institut für PhysikKarl-Franzens-Universität GrazGrazAustria
  4. 4.School of PhysicsThe University of New South WalesSydneyAustralia

Personalised recommendations