Few-Body Systems

, Volume 43, Issue 1–4, pp 227–232 | Cite as

Photoproduction and rescattering of polarized hyperons in deuterium

  • P. Nadel-Turoński
  • B. L. Berman
  • Y. Ilieva
  • D. G. Ireland
  • A. Tkabladze
Article

Abstract

Excited states of hadrons are essential for understanding confinement and non-perturbative QCD. Constituent quark models are successful in describing the first excited nucleon (N *) states in each partial wave, but predict more states than have been observed experimentally. Diquark correlations have been suggested as one explanation for these “missing” states. Recent advances in both theory (coupled-channels calculations) and experiment (high-statistics polarization measurements) offer new tools for resolving this question. The g13 experiment at Jefferson Lab, completed in June 2007, forms an important part of this effort. It used linearly and circularly polarized photons and a deuteron target to study N * states produced on the neutron, primarily through their decays into kaons and hyperons. The self-analyzing property of the Λ is ideally suited for this purpose. The general nature and exceptional size of the data set will, however, produce a wide range of results, including opening a new window on the study of hyperon-nucleon interactions through rescattering processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lichtl A (2006) PhD thesis. Carnegie Mellon University [hep-lat/0609019]Google Scholar
  2. Capstick, S, Roberts, W 2000Prog Part Nucl Phys45S241CrossRefADSGoogle Scholar
  3. Anselmino, M,  et al. 1993Rev Mod Phys651199CrossRefADSGoogle Scholar
  4. Santopinto, E 2005Phys Rev C72022201CrossRefADSGoogle Scholar
  5. Matsuyama, A, Sato, T, Lee, T-SH 2007Phys Rep439193CrossRefADSGoogle Scholar
  6. Excited Baryon Analysis Center at Jefferson Lab: http://ebac-theory.jlab.org
  7. Shklyar, V, Lenske, H, Mosel, U 2005Phys Rev C72015210CrossRefADSGoogle Scholar
  8. Barker, IS, Donnachie, A, Storrow, JK 1975Nucl Phys B95347CrossRefADSGoogle Scholar
  9. Mart, T, Bennhold, C 1999Phys Rev C61012201CrossRefADSGoogle Scholar
  10. Juliá-Díaz, B,  et al. 2006Phys Rev C73055204CrossRefADSGoogle Scholar
  11. Nikonov VA, et al. (2007) [arXiv:0707.3600]Google Scholar
  12. Kohri, H,  et al. 2006Phys Rev Lett97082003CrossRefADSGoogle Scholar
  13. Capstick, S, Roberts, W 1998Phys Rev D58074011CrossRefADSGoogle Scholar
  14. Laget, J-M 2006Phys Rev C73044003CrossRefADSGoogle Scholar
  15. Miyagawa, K,  et al. 2006Phys Rev C74034002CrossRefADSGoogle Scholar
  16. Bradford, R,  et al. 2007Phys Rev C75035205CrossRefADSGoogle Scholar
  17. Nadel-Turoński P, et al. (2006) Jefferson Lab experiment E06-103 (g13): http://www.jlab.org/exp_prog/proposals/06/PR-06-103.pdf
  18. Mecking, B,  et al. 2004Nucl Instr Meth A503513CrossRefADSGoogle Scholar
  19. Sober, DI,  et al. 2000Nucl Instr Meth A440263CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • P. Nadel-Turoński
    • 1
    • 3
  • B. L. Berman
    • 1
  • Y. Ilieva
    • 1
  • D. G. Ireland
    • 2
  • A. Tkabladze
    • 1
    • 4
  1. 1.The George Washington UniversityWashingtonUSA
  2. 2.University of GlasgowGlasgowUnited Kingdom
  3. 3.The Catholic University of AmericaWashingtonUSA
  4. 4.Schlumberger-SPCSugar-LandUSA

Personalised recommendations