Advertisement

Few-Body Systems

, Volume 41, Issue 3–4, pp 233–244 | Cite as

Charged exciton resonances in two and three dimensions

  • J. Zs. Mezei
  • A. T. Kruppa
  • K. Varga
Article

Abstract

Resonances of three-body Coulomb systems are investigated in two and three dimensions. The complex scaling method combined with the stochastic variational approach has been used to calculate the position (energy and width) of the resonance states. The dependence of the resonance states on the mass ratio of the constituents and the dimensionality of the space is studied. It is found that the width of the resonance states behaves very differently in 2D and 3D for molecule-like cation systems. The calculated lifetimes of the resonances are in the nano- and picosecond region, and these states might be experimentally observable in excitonic trions in semiconductor quantum dots.

Keywords

Resonance State Resonance Width Basis Size Complex Scaling Exciton Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Groote, JJ, dos Santos, AS, Masili, M, Hornos, JE 1998Phys Rev B5810383CrossRefGoogle Scholar
  2. Armour, EAG, Richard, J-M, Varga, K 2005Phys Rep4131CrossRefADSMathSciNetGoogle Scholar
  3. Usukura, J, Suzuki, Y, Varga, K 1999Phys Rev B595652CrossRefADSGoogle Scholar
  4. Riva, C, Peeters, FM, Varga, K 2000Phys Rev B6113873CrossRefADSGoogle Scholar
  5. Bracker, AS,  et al. 2005Phys Rev B72035332CrossRefADSGoogle Scholar
  6. Hilico, L, Grémaud, B, Jonckheere, T, Billy, N, Delande, D 2002Phys Rev A66022101CrossRefADSMathSciNetGoogle Scholar
  7. Grémaud, B, Gaspard, P 1998J Phys B311671CrossRefADSGoogle Scholar
  8. Mitroy, J, Bromley, MWJ, Ryzhikh, GG 2002J Phys B35R81CrossRefADSGoogle Scholar
  9. Mitroy, J 2002Phys Rev A66010501CrossRefADSGoogle Scholar
  10. Mitroy, J 2000J Phys B335307CrossRefADSGoogle Scholar
  11. Mitroy, J, Ryzhikh, GG 1999J Phys B32L621CrossRefADSGoogle Scholar
  12. Ryzhikh, GG, Mitroy, J 1997Phys Rev Lett794126CrossRefADSGoogle Scholar
  13. Papp, Z,  et al. 2002Phys Lett A30436zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. Papp, Z, Darai, J, Mezei, JZs, Hlousek, Z, Hu, C-Y 2005Phys Rev Lett943201CrossRefGoogle Scholar
  15. Schrader, DM 1998Nucl Instrum MethodsB143209ADSGoogle Scholar
  16. Rebane, TK, Markovski, ND 2003Phys Atom Nuclei66203CrossRefADSGoogle Scholar
  17. Rebane, TK, Kuzminski, AA 2002Opt Spectrosc93833CrossRefADSGoogle Scholar
  18. Riva, C, Peeters, FM, Varga, K 2000Phys Rev B6113873CrossRefADSGoogle Scholar
  19. Urbaszek, B,  et al. 2003Phys Rev Lett90247403CrossRefADSGoogle Scholar
  20. Peeters, FM, Riva, C, Varga, K 2002Few Body Syst3197CrossRefADSGoogle Scholar
  21. Richard J-M (1993) In: Goeke K, Kroll P, Petry HR (eds.) Quark cluster dynamics. Proc Bad Honnef Workshop 1992. Springer, Berlin HeidelbergGoogle Scholar
  22. Koch, SW,  et al. 2006Nature Materials5523CrossRefADSGoogle Scholar
  23. Palacios, A,  et al. 2005J Phys A38L99ADSGoogle Scholar
  24. Johnson, AC,  et al. 2004Phys Rev Lett93106803CrossRefADSGoogle Scholar
  25. Hogele, A,  et al. 2004Phys Rev Lett93217401CrossRefADSGoogle Scholar
  26. Li, T, Shakeshaft, R 2005Phys Rev A71052505CrossRefADSGoogle Scholar
  27. Bylicki, M, Nicolaides, CA 2000Phys Rev A61052509CrossRefADSGoogle Scholar
  28. Ho, YK 1983Phys Rep991CrossRefADSGoogle Scholar
  29. Moiseyev, N 1998Phys Rep302211CrossRefADSGoogle Scholar
  30. Suzuki, Y, Varga, K 1998Stochastic variational approach to quantum-mechanical few-body problemsSpringerBerlin HeidelbergGoogle Scholar
  31. Varga, K, Suzuki, Y 1995Phys Rev C522885CrossRefADSGoogle Scholar
  32. Usukura, J, Suzuki, Y 2002Phys Rev A66010502CrossRefADSGoogle Scholar
  33. Kilic, S, Karr, J-P, Hilico, L 2004Phys Rev A70042506CrossRefADSGoogle Scholar
  34. Moiseyev, N, Certain, PR, Weinhold, F 1978Mol Phys361613CrossRefADSMathSciNetGoogle Scholar
  35. Yaris, R, Winkler, P 1978J Phys B111475CrossRefADSGoogle Scholar
  36. Ho, YK 1979Phys Rev A192347CrossRefADSGoogle Scholar
  37. Ho, YK 1997Chinese J Phys3597ADSGoogle Scholar
  38. Mezei, JZs, Papp, Z 2006Phys Rev A73030701CrossRefADSGoogle Scholar
  39. Madronero, J,  et al. 2005Europhys Lett70183CrossRefADSGoogle Scholar
  40. Kiraz, A,  et al. 2002Phys Rev B65161303CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Zs. Mezei
    • 1
  • A. T. Kruppa
    • 1
  • K. Varga
    • 2
  1. 1.Institute of Nuclear ResearchHungarian Academy of SciencesDebrecenHungary
  2. 2.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations