Advertisement

Surgery Today

, Volume 49, Issue 2, pp 143–149 | Cite as

Positron emission tomography/computed tomography as a clinical diagnostic tool for anterior mediastinal tumors

  • Tatsuaki WatanabeEmail author
  • Hideo Shimomura
  • Tatsushi Mutoh
  • Ryoko Saito
  • Ryoi Goto
  • Takehiro Yamada
  • Hirotsugu Notsuda
  • Yasushi Matsuda
  • Masafumi Noda
  • Akira Sakurada
  • Yasuyuki Taki
  • Yoshinori Okada
Original Article
  • 122 Downloads

Abstract

Purpose

The purpose of this study was to assess the usefulness of positron emission tomography/computed tomography (PET/CT) in the differential diagnosis of anterior mediastinal tumors.

Methods

A total of 94 patients with anterior mediastinal masses or nodules (male, n = 41; female, n = 53; age, 17–84 years) were retrospectively evaluated. All patients were evaluated by PET/CT and the masses or nodules were histologically diagnosed in our institution.

Results

Anterior mediastinal masses and nodules were classified into two disease categories: Low (thymic hyperplasia, thymoma, mature teratoma, and MALT lymphoma) and High (thymic carcinoid, thymic cancer, diffuse large B-cell lymphoma, T-cell lymphoblastic lymphoma, Hodgkin’s lymphoma, and malignant germ cell tumors) groups. The sensitivity and specificity of maximum standardized uptake value (SUVmax) 7.5 for the detection of High group were 77% and 100%, respectively. The SUVmax distributions of the WHO histological thymoma types and Masaoka stage thymomas extensively overlapped. Masaoka stage III thymomas had significantly higher SUVmax than Masaoka stage I thymomas. Regarding the TNM classification, the SUVmax of T3 and T1b thymomas was higher than T1a thymoma.

Conclusion

Although the SUVmax of each disease overlapped, PET/CT findings provided useful information for the differential diagnosis of anterior mediastinal masses.

Keywords

PET/CT Anterior mediastinal mass Thymoma Malignant lymphoma 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

References

  1. 1.
    Davis RD, Oldham HN, Sabiston DC. Primary cysts and neoplasms of the mediastinum: recent changes in clinical presentation, methods of diagnosis, management, and results. Ann Thorac Surg. 1987;44:229–37.CrossRefGoogle Scholar
  2. 2.
    Detterbeck FC, Parsons AM. Thymic tumors. Ann Thorac Surg. 2004;77:1860–9.CrossRefGoogle Scholar
  3. 3.
    Girard N, Mornex F, Van Houtte P, Cordier JF, van Schil P. Thymoma: a focus on current therapeutic management. J Thorac Oncol. 2009;4:119–26.CrossRefGoogle Scholar
  4. 4.
    Carter BW, Marom EM, Detterbeck FC. Approaching the patient with an anterior mediastinal mass: a guide for clinicians. J Thorac Oncol. 2014;9:102–9.CrossRefGoogle Scholar
  5. 5.
    Kubota K, Yamada S, Kondo T, Yamada K, Fukuda H, Fujiwara T, et al. PET imaging of primary mediastinal tumours. Br J Cancer. 1996;73:882–6.CrossRefGoogle Scholar
  6. 6.
    Liu Y. Characterization of thymic lesions with F-18 FDG PET-CT: an emphasis on epithelial tumors. Nucl Med Commun. 2011;32:554–62.CrossRefGoogle Scholar
  7. 7.
    Luzzi L, Campione A, Gorla A, Vassallo G, Bianchi A, Biggi A, et al. Role of fluorine-flurodeoxyglucose positron emission tomography/computed tomography in preoperative assessment of anterior mediastinal masses. Eur J Cardiothorac Surg. 2009;36:475–9.CrossRefGoogle Scholar
  8. 8.
    Kitami A, Sano F, Ohashi S, Suzuki K, Uematsu S, Suzuki T, et al. The usefulness of positron-emission tomography findings in the management of anterior mediastinal tumors. Ann Thorac Cardiovasc Surg. 2017;23:26–30.CrossRefGoogle Scholar
  9. 9.
    Endo M, Nakagawa K, Ohde Y, Okumura T, Kondo H, Igawa S, et al. Utility of 18FDG-PET for differentiating the grade of malignancy in thymic epithelial tumors. Lung Cancer. 2008;61:350–5.CrossRefGoogle Scholar
  10. 10.
    Terzi A, Bertolaccini L, Rizzardi G, Luzzi L, Bianchi A, Campione A, et al. Usefulness of 18-F FDG PET/CT in the pre-treatment evaluation of thymic epithelial neoplasms. Lung Cancer. 2011;74:239–43.CrossRefGoogle Scholar
  11. 11.
    Carter BW, Tomiyama N, Bhora FY, Rosado de Christenson ML, Nakajima J, Boiselle PM, et al. A modern definition of mediastinal compartments. J Thorac Oncol. 2014;9:97–101.CrossRefGoogle Scholar
  12. 12.
    Masaoka A, Monden Y, Nakahara K, Tanioka T. Follow-up study of thymomas with special reference to their clinical stages. Cancer. 1981;48:2485–92.CrossRefGoogle Scholar
  13. 13.
    Detterbeck FC, Stratton K, Giroux D, Asamura H, Crowley J, Falkson C, et al. The IASLC/ITMIG thymic epithelial tumors staging project: proposal for an evidence-based stage classification system for the forthcoming (8th) edition of the TNM classification of malignant tumors. J Thorac Oncol. 2014;9:65–72.CrossRefGoogle Scholar
  14. 14.
    Sung YM, Lee KS, Kim BT, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med. 2006;47:1628–34.PubMedGoogle Scholar
  15. 15.
    Otsuka H. The utility of FDG-PET in the diagnosis of thymic epithelial tumors. J Med Invest. 2012;59:225–34.CrossRefGoogle Scholar
  16. 16.
    Sasaki M, Kuwabara Y, Ichiya Y, Akashi Y, Yoshida T, Nakagawa M, et al. Differential diagnosis of thymic tumors using a combination of 11C-methionine PET and FDG PET. J Nucl Med. 1999;40:1595–601.PubMedGoogle Scholar
  17. 17.
    Liu RS, Yeh SH, Huang MH, Wang LS, Chu LS, Chang CP, et al. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: a preliminary report. Eur J Nucl Med. 1995;22:1402–7.CrossRefGoogle Scholar
  18. 18.
    Matsumoto I, Oda M, Takizawa M, Waseda R, Nakajima K, Kawano M, et al. Usefulness of fluorine-18 fluorodeoxyglucose-positron emission tomography in management strategy for thymic epithelial tumors. Ann Thorac Surg. 2013;95:305–10.CrossRefGoogle Scholar
  19. 19.
    Lococo F, Cesario A, Okami J, Cardillo G, Cavuto S, Tokunaga T, et al. Role of combined 18F-FDG-PET/CT for predicting the WHO malignancy grade of thymic epithelial tumors: a multicenter analysis. Lung Cancer. 2013;82:245–51.CrossRefGoogle Scholar
  20. 20.
    Shibata H, Nomori H, Uno K, Sakaguchi K, Nakashima R, Iyama K, et al. 18F-fluorodeoxyglucose and 11C-acetate positron emission tomography are useful modalities for diagnosing the histologic type of thymoma. Cancer. 2009;115:2531–8.CrossRefGoogle Scholar
  21. 21.
    Toba H, Kondo K, Sadohara Y, Otsuka H, Morimoto M, Kajiura K, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography and the relationship between fluorodeoxyglucose uptake and the expression of hypoxia-inducible factor-1alpha, glucose transporter-1 and vascular endothelial growth factor in thymic epithelial tumours. Eur J Cardiothorac Surg. 2013;44:e105-12.PubMedGoogle Scholar
  22. 22.
    Kumar A, Regmi SK, Dutta R, Kumar R, Gupta SD, Das P, et al. Characterization of thymic masses using (18)F-FDG PET-CT. Ann Nucl Med. 2009;23:569–77.CrossRefGoogle Scholar
  23. 23.
    Fukumoto K, Taniguchi T, Ishikawa Y, Kawaguchi K, Fukui T, Kato K, et al. The utility of [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in thymic epithelial tumours. Eur J Cardiothorac Surg. 2012;42:e152-6.CrossRefGoogle Scholar
  24. 24.
    Viti A, Bertolaccini L, Cavallo A, Fortunato M, Bianchi A, Terzi A. 18-Fluorine fluorodeoxyglucose positron emission tomography in the pretreatment evaluation of thymic epithelial neoplasms: a metabolic biopsy confirmed by Ki-67 expression. Eur J Cardiothorac Surg 2014;46:369–74; (discussion 74).CrossRefGoogle Scholar
  25. 25.
    Peterson L, Kurland B, Shields A, Novakova A, Christopfel R, Byrd D, et al. Reproducibility of FDG SUVmax for metastatic breast cancer lesions in the same or different PET/CT scanners in a local network. J Nucl Med. 2014;55:1.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tatsuaki Watanabe
    • 1
    Email author
  • Hideo Shimomura
    • 2
  • Tatsushi Mutoh
    • 2
  • Ryoko Saito
    • 3
  • Ryoi Goto
    • 2
  • Takehiro Yamada
    • 1
    • 3
  • Hirotsugu Notsuda
    • 1
  • Yasushi Matsuda
    • 1
  • Masafumi Noda
    • 1
  • Akira Sakurada
    • 1
  • Yasuyuki Taki
    • 2
  • Yoshinori Okada
    • 1
  1. 1.Department of Thoracic Surgery, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
  2. 2.Department of Nuclear Medicine and Radiology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
  3. 3.Department of PathologyTohoku University School of MedicineSendaiJapan

Personalised recommendations