Surgery Today

, Volume 48, Issue 1, pp 9–17 | Cite as

Cells of origin of pancreatic neoplasms

  • Junpei Yamaguchi
  • Yukihiro Yokoyama
  • Toshio Kokuryo
  • Tomoki Ebata
  • Masato Nagino
Review Article

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease associated with poor prognosis, despite recent medical advances. It is of great importance to understand the initial events and cells of origin of pancreatic cancer to prevent the development and progression of PDAC. There are three distinct precursor lesions that develop into PDAC: pancreatic intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and mucinous cystic neoplasms (MCNs). Studies on genetically engineered mouse models have revealed that the initiation and development of these lesions largely depend on genetic alterations. These lesions originate from different populations in the pancreas. PanIN development seems to be the result of the transdifferentiation of acinar cells, whereas IPMNs most likely arise from the progenitor niche of the pancreatic ductal epithelium. Pancreatic carcinogenesis is dependent on various events, including gene alterations, environmental insults, and cell types. However, further studies are needed to fully understand the initial processes of pancreatic cancer.

Keywords

Pancreatic cancer PanIN IPMN Cell of origin Progenitors 

Abbreviations

IPMN

Intraductal papillary mucinous neoplasm

PanIN

Pancreatic intraepithelial neoplasm

CAC

Centroacinar cell

Notes

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest to disclose.

References

  1. 1.
    Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Morris JPt, Wang SC, Hebrok M. KRAS, Hedgehog. Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 2012;142:730 e9–733 e9.CrossRefGoogle Scholar
  5. 5.
    Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.PubMedGoogle Scholar
  6. 6.
    Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia. 2005;7:17–23.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Koorstra JB, Feldmann G, Habbe N, Maitra A. Morphogenesis of pancreatic cancer: role of pancreatic intraepithelial neoplasia (PanINs). Langenbecks Arch Surg. 2008;393:561–70.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med. 1993;328:1433–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Westphalen CB, Takemoto Y, Tanaka T, Macchini M, Jiang Z, Renz BW, et al. Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell. 2016;18:441–55.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yanagisawa A, Ohtake K, Ohashi K, Hori M, Kitagawa T, Sugano H, et al. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res. 1993;53:953–6.PubMedGoogle Scholar
  11. 11.
    Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11:291–302.CrossRefPubMedGoogle Scholar
  12. 12.
    Hermann PC, Sancho P, Canamero M, Martinelli P, Madriles F, Michl P, et al. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Gastroenterology 2014;147:1119 e4–1133 e4.CrossRefGoogle Scholar
  13. 13.
    Blackford A, Parmigiani G, Kensler TW, Wolfgang C, Jones S, Zhang X, et al. Genetic mutations associated with cigarette smoking in pancreatic cancer. Cancer Res. 2009;69:3681–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, et al. Extended Clavien–Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016;46:668–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Tomihara H, Eguchi H, Yamada D, Gotoh K, Kawamoto K, Wada H, et al. Preoperative chemoradiotherapy does not compromise the feasibility of adjuvant chemotherapy for patients with pancreatic ductal adenocarcinoma. Surg Today. 2017;47:218–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Koo BK, Clevers H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology. 2014;147:289–302.CrossRefPubMedGoogle Scholar
  17. 17.
    Kretzschmar K, Watt FM. Lineage tracing. Cell. 2012;148:33–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 2010;138:1681–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327:542–5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology. 2008;134:849–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell. 2010;7:656–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Mills JC, Shivdasani RA. Gastric epithelial stem cells. Gastroenterology. 2011;140:412–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Morgan BA. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect Med. 2014;4:a015180.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol. 2016;428:1423–40.CrossRefPubMedGoogle Scholar
  27. 27.
    White AC, Lowry WE. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol. 2015;25:11–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Rycaj K, Tang DG. Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res. 2015;75:4003–11.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blanpain C. Tracing the cellular origin of cancer. Nat Cell Biol. 2013;15:126–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12:170–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Youssef KK, Van Keymeulen A, Lapouge G, Beck B, Michaux C, Achouri Y, et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol. 2010;12:299–305.PubMedGoogle Scholar
  33. 33.
    Wang GY, Wang J, Mancianti ML, Epstein EH Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/−) mice. Cancer Cell. 2011;19:114–24.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A, et al. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest. 2011;121:1768–81.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Svard J, et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci USA. 2011;108:4099–104.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci USA. 2011;108:4093–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.CrossRefPubMedGoogle Scholar
  40. 40.
    Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA. 2010;107:75–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138:653–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol. 2016;18:238–45.CrossRefPubMedGoogle Scholar
  44. 44.
    Puri S, Folias AE, Hebrok M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell. 2015;16:18–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol. 2016;17:413–25.CrossRefPubMedGoogle Scholar
  46. 46.
    Stanger BZ, Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology. 2013;144:1170–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhu L, Shi G, Schmidt CM, Hruban RH, Konieczny SF. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am J Pathol. 2007;171:263–73.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA. 2008;105:18913–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JPt, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22:737–50.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kong B, Michalski CW, Erkan M, Friess H, Kleeff J. From tissue turnover to the cell of origin for pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2011;8:467–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43:34–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Delacour A, Nepote V, Trumpp A, Herrera PL. Nestin expression in pancreatic exocrine cell lineages. Mech Dev. 2004;121:3–14.CrossRefPubMedGoogle Scholar
  53. 53.
    Esni F, Stoffers DA, Takeuchi T, Leach SD. Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech Dev. 2004;121:15–25.CrossRefPubMedGoogle Scholar
  54. 54.
    Ishiwata T, Kudo M, Onda M, Fujii T, Teduka K, Suzuki T, et al. Defined localization of nestin-expressing cells in l-arginine-induced acute pancreatitis. Pancreas. 2006;32:360–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Kim SY, Lee SH, Kim BM, Kim EH, Min BH, Bendayan M, et al. Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulin-secreting cells from NPDS cells. Dev Dyn. 2004;230:1–11.CrossRefPubMedGoogle Scholar
  56. 56.
    May R, Sureban SM, Lightfoot SA, Hoskins AB, Brackett DJ, Postier RG, et al. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas. Am J Physiol Gastrointest Liver Physiol. 2010;299:G303–G10.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yamaguchi J, Liss AS, Sontheimer A, Mino-Kenudson M, Castillo CF, Warshaw AL, et al. Pancreatic duct glands (PDGs) are a progenitor compartment responsible for pancreatic ductal epithelial repair. Stem Cell Res. 2015;15:190–202.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Strobel O, Rosow DE, Rakhlin EY, Lauwers GY, Trainor AG, Alsina J, et al. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology. 2010;138:1166–77.CrossRefPubMedGoogle Scholar
  59. 59.
    Guerra C, Barbacid M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol Oncol. 2013;7:232–47.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gopinathan A, Morton JP, Jodrell DI, Sansom OJ. GEMMs as preclinical models for testing pancreatic cancer therapies. Dis Model Mech. 2015;8:1185–200.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.CrossRefPubMedGoogle Scholar
  62. 62.
    Heinmoller E, Dietmaier W, Zirngibl H, Heinmoller P, Scaringe W, Jauch KW, et al. Molecular analysis of microdissected tumors and preneoplastic intraductal lesions in pancreatic carcinoma. Am J Pathol. 2000;157:83–92.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997;57:1731–4.PubMedGoogle Scholar
  64. 64.
    Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.CrossRefPubMedGoogle Scholar
  65. 65.
    Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 2010;107:246–51.CrossRefPubMedGoogle Scholar
  66. 66.
    Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA. 2006;103:5947–52.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17:3112–26.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, et al. PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res. 2010;70:7114–24.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS, et al. Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell. 2011;42:36–49.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev. 2006;20:3147–60.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Skoulidis F, Cassidy LD, Pisupati V, Jonasson JG, Bjarnason H, Eyfjord JE, et al. Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell. 2010;18:499–509.CrossRefPubMedGoogle Scholar
  72. 72.
    Hanlon L, Avila JL, Demarest RM, Troutman S, Allen M, Ratti F, et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res. 2010;70:4280–6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, et al. LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 2010;139:586–97, 97 e1–6CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Perez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver AL, et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature. 2012;486:266–70.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Russell R, Perkhofer L, Liebau S, Lin Q, Lechel A, Feld FM, et al. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat Commun. 2015;6:7677.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chalabi-Dchar M, Cassant-Sourdy S, Duluc C, Fanjul M, Lulka H, Samain R, et al. Loss of somatostatin receptor subtype 2 promotes growth of KRAS-induced pancreatic tumors in mice by activating PI3K signaling and overexpression of CXCL16. Gastroenterology. 2015;148:1452–65.CrossRefPubMedGoogle Scholar
  77. 77.
    Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006;20:3130–46.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, et al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res. 2007;67:8121–30.CrossRefPubMedGoogle Scholar
  79. 79.
    Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11:229–43.CrossRefPubMedGoogle Scholar
  80. 80.
    Qiu W, Tang SM, Lee S, Turk AT, Sireci AN, Qiu A, et al. Loss of activin receptor type 1B accelerates development of intraductal papillary mucinous neoplasms in mice with activated KRAS. Gastroenterology 2016;150:218 e12–228 e12.CrossRefGoogle Scholar
  81. 81.
    Yamaguchi J, Mino-Kenudson M, Liss AS, Chowdhury S, Wang TC, Castillo CF, et al. Loss of trefoil factor 2 From pancreatic duct glands promotes formation of intraductal papillary mucinous neoplasms in mice. Gastroenterology 2016.Google Scholar
  82. 82.
    Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM. Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell. 2007;12:266–79.CrossRefPubMedGoogle Scholar
  83. 83.
    Sano M, Driscoll DR, De Jesus-Monge WE, Klimstra DS, Lewis BC. Activated wnt signaling in stroma contributes to development of pancreatic mucinous cystic neoplasms. Gastroenterology. 2014;146:257–67.CrossRefPubMedGoogle Scholar
  84. 84.
    Mazur PK, Einwachter H, Lee M, Sipos B, Nakhai H, Rad R, et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA. 2010;107:13438–43.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, Kaniewski B, et al. Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet. 2009;5:e1000575.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA. 2008;105:18907–12.CrossRefGoogle Scholar
  87. 87.
    Shi G, Zhu L, Sun Y, Bettencourt R, Damsz B, Hruban RH, et al. Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia. Gastroenterology. 2009;136:1368–78.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G, et al. The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 2003;63:2005–9.PubMedGoogle Scholar
  89. 89.
    Ray KC, Bell KM, Yan J, Gu G, Chung CH, Washington MK, et al. Epithelial tissues have varying degrees of susceptibility to Kras(G12D)-initiated tumorigenesis in a mouse model. PLoS One. 2011;6:e16786.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    von Figura G, Morris JPt, Wright CV, Hebrok M. Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut. 2014;63:656–64.CrossRefGoogle Scholar
  91. 91.
    Roy N, Malik S, Villanueva KE, Urano A, Lu X, Von Figura G, et al. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev. 2015;29:658–71.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    von Figura G, Fukuda A, Roy N, Liku ME, Morris Iv JP, Kim GE, et al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol. 2014;16:255–67.CrossRefGoogle Scholar
  93. 93.
    Reichert M, Blume K, Kleger A, Hartmann D, von Figura G. Developmental pathways direct pancreatic cancer initiation from its cellular origin. Stem Cells Int. 2016;2016:9298535.CrossRefPubMedGoogle Scholar
  94. 94.
    Roy N, Hebrok M. Regulation of cellular identity in cancer. Dev Cell. 2015;35:674–84.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J, et al. Ras activity levels control the development of pancreatic diseases. Gastroenterology 2009;137:1072–82, 82 e1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Bailey JM, Hendley AM, Lafaro KJ, Pruski MA, Jones NC, Alsina J, et al. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene. 2016;35:4282–8.CrossRefPubMedGoogle Scholar
  97. 97.
    Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, Crowley D, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 2009;16:379–89.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell. 2011;19:728–39.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Stanger BZ, Stiles B, Lauwers GY, Bardeesy N, Mendoza M, Wang Y, et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell. 2005;8:185–95.CrossRefPubMedGoogle Scholar
  100. 100.
    Carriere C, Seeley ES, Goetze T, Longnecker DS, Korc M. The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl Acad Sci USA. 2007;104:4437–42.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Delgiorno KE, Hall JC, Takeuchi KK, Pan FC, Halbrook CJ, Washington MK, et al. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 2014;146:233–44 e5.Google Scholar
  102. 102.
    Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY, Plentz R, et al. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology. 2014;146:245–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Junpei Yamaguchi
    • 1
  • Yukihiro Yokoyama
    • 1
  • Toshio Kokuryo
    • 1
  • Tomoki Ebata
    • 1
  • Masato Nagino
    • 1
  1. 1.Division of Surgical Oncology, Department of SurgeryNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations