Advertisement

Surgery Today

, Volume 45, Issue 10, pp 1280–1290 | Cite as

Impact of examinees’ stereopsis and near visual acuity on laparoscopic virtual reality performance

  • Henry Hoffmann
  • Rebecca Ruiz-Schirinzi
  • David Goldblum
  • Salome Dell-Kuster
  • Daniel Oertli
  • Dieter Hahnloser
  • Rachel Rosenthal
Original Article

Abstract

Purpose

Laparoscopic surgery represents specific challenges, such as the reduction of a three-dimensional anatomic environment to two dimensions. The aim of this study was to investigate the impact of the loss of the third dimension on laparoscopic virtual reality (VR) performance.

Methods

We compared a group of examinees with impaired stereopsis (group 1, n = 28) to a group with accurate stereopsis (group 2, n = 29). The primary outcome was the difference between the mean total score (MTS) of all tasks taken together and the performance in task 3 (eye–hand coordination), which was a priori considered to be the most dependent on intact stereopsis.

Results

The MTS and performance in task 3 tended to be slightly, but not significantly, better in group 2 than in group 1 [MTS: −0.12 (95 % CI −0.32, 0.08; p = 0.234); task 3: −0.09 (95 % CI −0.29, 0.11; p = 0.385)]. The difference of MTS between simulated impaired stereopsis between group 2 (by attaching an eye patch on the adominant eye in the 2nd run) and the first run of group 1 was not significant (MTS: p = 0.981; task 3: p = 0.527).

Conclusion

We were unable to demonstrate an impact of impaired examinees’ stereopsis on laparoscopic VR performance. Individuals with accurate stereopsis seem to be able to compensate for the loss of the third dimension in laparoscopic VR simulations.

Keywords

Laparoscopy Virtual reality Simulation Stereopsis Visual impairment 

Notes

Acknowledgements

The authors would like to thank Martina Vitz and Jéròme Gapany of the Laparoscopic Training Center Zurich, Switzerland, for their support in the realization of this study. This study was supported by a grant from the Swiss National Science Foundation (No. 3200B0-120722/1). Part of this work was presented at the Annual Meeting of the Swiss Society of Ophthalmology (SOG) in 2012.

Conflict of interest

Henry Hoffmann, Rebecca Ruiz-Schirinzi, Salome Dell-Kuster and Professors David Goldblum, Daniel Oertli, Dieter Hahnloser and Rachel Rosenthal have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Ohtani H, Tamamori Y, Noguchi K, Azuma T, Fujimoto S, Oba H, et al. A meta-analysis of randomized controlled trials that compared laparoscopy-assisted and open distal gastrectomy for early gastric cancer. J Gastrointest Surg. 2010;14:958–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu Z, Zhang P, Ma Y, Chen H, Zhou Y, Zhang M, et al. Laparoscopy or not: a meta-analysis of the surgical effects of laparoscopic versus open appendicectomy. Surg Laparosc Endosc Percutan Tech. 2010;20:362–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Sauerland S, Jaschinski T, Neugebauer EA. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev. 2010;10:CD001546.PubMedGoogle Scholar
  4. 4.
    Kuhry E, Schwenk WF, Gaupset R, Romild U, Bonjer HJ. Long-term results of laparoscopic colorectal cancer resection. Cochrane Database Syst Rev. 2008;2:CD003432.PubMedGoogle Scholar
  5. 5.
    Jayne DG, Thorpe HC, Copeland J, Quirke P, Brown JM, Guillou PJ. Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open surgery for colorectal cancer. Br J Surg. 2010;97:1638–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Buunen M, Veldkamp R, Hop WCJ, Kuhry E, Jeekel J, Haglind E, et al. Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. Lancet Oncol. 2009;10:44–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Fleshman J, Sargent DJ, Green E, Anvari M, Stryker SJ, Beart RW, et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg. 2007;246:655–62 (discussion 662–4).CrossRefPubMedGoogle Scholar
  8. 8.
    Gallagher AG, Ritter EM, Lederman AB, McClusky DA, Smith CD, et al. Video-assisted surgery represents more than a loss of three-dimensional vision. Am J Surg. 2005;189:76–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Nisky I, Huang F, Milstein A, Pugh CM, Mussa-Ivaldi FA, Karniel A. Perception of stiffness in laparoscopy—the fulcrum effect. Stud Heal Technol Inform. 2012;173:313–9.Google Scholar
  10. 10.
    Xu L, Wang Y, Li Y, Wang Y, Cui T, Li J, et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology. 2006;113(1134):e1–11.PubMedGoogle Scholar
  11. 11.
    Maberley DAL, Hollands H, Chuo J, Tam G, Konkal J, Roesch M, et al. The prevalence of low vision and blindness in Canada. Eye. 2006;20:341–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Rahi JS, Cumberland PM, Peckham CS. Visual impairment and vision-related quality of life in working-age adults: findings in the 1958 British birth cohort. Ophthalmology. 2009;116:270–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Shah J, Buckley D, Frisby J, Darzi A. Depth cue reliance in surgeons and medical students. Surg Endosc. 2003;17:1472–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Dunbar G, Holland CA, Maylor EA. Older pedestrians: a critical review of the literature. Road safety research report. London: The Department for Transport. 2004.Google Scholar
  15. 15.
    Brown S, Weih L, Mukesh N, McCarty C, Taylor H. Assessment of adult stereopsis using the Lang 1 stereotest: a pilot study. Binocul Vis Strabismus Q. 2001;16:91–8.PubMedGoogle Scholar
  16. 16.
    Sue S. Test distance vision using a Snellen chart. Community Eye Heal. 2007;20:52.Google Scholar
  17. 17.
    Nüssgens Z, Czerwonka B, Roggenkämper P. Examinations on the new Lang test. Strabismus. 1993;1:69–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Okuda FC, Apt L, Wanter BS. Evaluation of the TNO-random-dot stereogram test. Am Orthopt J. 1977;27:124–30.PubMedGoogle Scholar
  19. 19.
    Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4:e297.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosenthal R, Schäfer J, Hoffmann H, Vitz M, Oertli D, Hahnloser D. Personality traits and virtual reality performance. Surg Endosc. 2013;27:222–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Klein R, Klein BE, Linton KL, De Mets DL. The beaver dam eye study: visual acuity. Ophthalmology. 1991;98:1310–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Rosenthal R, Geuss S, Dell-Kuster S, Schäfer J, Hahnloser D, Demartines N. Video gaming in children improves performance on a virtual reality trainer but does not yet make a laparoscopic surgeon. Surg Innov. 2011;18:160–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Suleman R, Yang T, Paige J, Chauvin S, Alleyn J, Brewer M, et al. Hand–eye dominance and depth perception effects in performance on a basic laparoscopic skills set. JSLS. 2010;14:35–40.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Selvander M, Åsman P. Stereoacuity and intraocular surgical skill: effect of stereoacuity level on virtual reality intraocular surgical performance. J Cataract Refract Surg. 2011;37:2188–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Barry GP, Simon JW, Auringer D, Dunnican W, Zobal-Ratner J. Performance of strabismic subjects using a validated surgical training module: a pilot study. J AAPOS. 2009;13:350–3 (353. e1–2).CrossRefPubMedGoogle Scholar
  26. 26.
    Palep JH. Robotic assisted minimally invasive surgery. J Minim Access Surg. 2009;5:1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Storz P, Buess GF, Kunert W, Kirschniak A. 3D HD versus 2D HD: surgical task efficiency in standardised phantom tasks. Surg Endosc. 2011;26:1454–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Pedraza R, Ramos-Valadez DI, Haas EM. Robotic-assisted laparoscopic surgery of the colon and rectum: a literature review. Cir Cir. 2011;79:384–91.PubMedGoogle Scholar
  29. 29.
    Hanna GB, Shimi SM. Cuschieri a. Randomised study of influence of two-dimensional versus three-dimensional imaging on performance of laparoscopic cholecystectomy. Lancet. 1998;351:248–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Hanna GB, Cuschieri A. Influence of two-dimensional and three-dimensional imaging on endoscopic bowel suturing. World J Surg. 2000;24:444–9.CrossRefPubMedGoogle Scholar
  31. 31.
    McLachlan G. From 2D to 3D: the future of surgery? Lancet. 2011;378:1368.CrossRefPubMedGoogle Scholar
  32. 32.
    Wilson M, McGrath J, Vine S, Brewer J, Defriend D, Masters R. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts. Surg Endosc. 2010;24:2458–64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wilson MR, McGrath JS, Vine SJ, Brewer J, Defriend D, Masters RSW. Perceptual impairment and psychomotor control in virtual laparoscopic surgery. Surg Endosc. 2011;25:2268–74.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Richstone L, Schwartz MJ, Seideman C, Cadeddu J, Marshall S, Kavoussi LR. Eye metrics as an objective assessment of surgical skill. Ann Surg. 2010;252:177–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Henry Hoffmann
    • 1
  • Rebecca Ruiz-Schirinzi
    • 2
  • David Goldblum
    • 2
  • Salome Dell-Kuster
    • 1
    • 3
  • Daniel Oertli
    • 1
  • Dieter Hahnloser
    • 4
  • Rachel Rosenthal
    • 1
  1. 1.Department of SurgeryUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of OphthalmologyUniversity Hospital BaselBaselSwitzerland
  3. 3.Basel Institute for Clinical Epidemiology and BiostatisticsBaselSwitzerland
  4. 4.Department of SurgeryUniversity Hospital LausanneLausanneSwitzerland

Personalised recommendations