Surgery Today

, Volume 44, Issue 5, pp 919–926

Intraperitoneal administration of cisplatin via an in situ cross-linkable hyaluronic acid-based hydrogel for peritoneal dissemination of gastric cancer

  • Shigenobu Emoto
  • Hironori Yamaguchi
  • Takao Kamei
  • Hironori Ishigami
  • Takashi Suhara
  • Yukimitsu Suzuki
  • Taichi Ito
  • Joji Kitayama
  • Toshiaki Watanabe
Original Article



To develop a drug-delivery system for the prolonged retention of intraperitoneally (i.p.) administered cisplatin (CDDP) to deliver intraperitoneal chemotherapy against peritoneal carcinomatosis effectively.


CDDP was encapsulated inside an in situ cross-linkable hyaluronic acid (HA)-based hydrogel. The gelation and degradation kinetics of the hydrogel and the release kinetics of CDDP were investigated in vitro, and the antitumor effect was investigated in a mouse model of peritoneal dissemination of human gastric cancer.


The gelation time varied according to the concentration of two polymers: HA-adipic dihydrazide and HA-aldehyde. CDDP was released from the hydrogel for more than 4 days. A cell proliferation assay showed that the polymers themselves were not cytotoxic toward MKN45P, a human gastric cancer cell line. By mixing the two polymers in the peritoneum, in situ gelation was achieved. The weight of peritoneal nodules decreased in the hydrogel-conjugated CDDP group, whereas no significant antitumor effect was observed in the free CDDP group.


In situ cross-linkable HA hydrogels represent a promising biomaterial to prolong the retention and sustain the release of intraperitoneally administered CDDP in the peritoneal cavity and to enhance its antitumor effects against peritoneal dissemination.


Intraperitoneal chemotherapy Hyaluronic acid Hydrogel Cisplatin Peritoneal dissemination 


  1. 1.
    Isobe Y, Nashimoto A, Akazawa K, Oda I, Hayashi K, Miyashiro I, Katai H, Tsujitani S, Kodera Y, Seto Y, Kaminishi M. Gastric cancer treatment in Japan: 2008 annual report of the JGCA nationwide registry. Gastric Cancer. 2011;14(4):301–16.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, Miyashita K, Nishizaki T, Kobayashi O, Takiyama W, Toh Y, Nagaie T, Takagi S, Yamamura Y, Yanaoka K, Orita H, Takeuchi M. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 2008;9(3):215–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Ikeguchi M, Miyake T, Matsunaga T, Yamamoto M, Fukumoto Y, Yamada Y, Fukuda K, Saito H, Tatebe S, Tsujitani S. Recent results of therapy for scirrhous gastric cancer. Surg Today. 2009;39(4):290–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Brigand C, Arvieux C, Gilly FN, Glehen O. Treatment of peritoneal carcinomatosis in gastric cancers. Dig Dis. 2004;22(4):366–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Kodera Y, Ito Y, Ito S, Ohashi N, Mochizuki Y, Yamamura Y, Koike M, Fujiwara M, Nakanishi H, Nakao A. Intraperitoneal paclitaxel: a possible impact of regional delivery for prevention of peritoneal carcinomatosis in patients with gastric carcinoma. Hepatogastroenterology. 2007;54(75):960–3.PubMedGoogle Scholar
  6. 6.
    Ishigami H, Kitayama J, Kaisaki S, Hidemura A, Kato M, Otani K, Kamei T, Soma D, Miyato H, Yamashita H, Nagawa H. Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol. 2010;21(1):67–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Alberts DS, Liu PY, Hannigan EV, O’Toole R, Williams SD, Young JA, Franklin EW, Clarke-Pearson DL, Malviya VK, DuBeshter B. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335(26):1950–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Francis P, Rowinsky E, Schneider J, Hakes T, Hoskins W, Markman M. Phase I feasibility and pharmacologic study of weekly intraperitoneal paclitaxel: a Gynecologic Oncology Group pilot Study. J Clin Oncol. 1995;13(12):2961–7.PubMedGoogle Scholar
  9. 9.
    Markman M, Rowinsky E, Hakes T, Reichman B, Jones W, Lewis JL Jr, Rubin S, Curtin J, Barakat R, Phillips M, et al. Phase I trial of intraperitoneal taxol: a Gynecoloic Oncology Group study. J Clin Oncol. 1992;10(9):1485–91.PubMedGoogle Scholar
  10. 10.
    Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Sugarbaker PH, Mora JT, Carmignani P, Stuart OA, Yoo D. Update on chemotherapeutic agents utilized for perioperative intraperitoneal chemotherapy. Oncologist. 2005;10(2):112–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Dedrick RL, Flessner MF. Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst. 1997;89(7):480–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Echarri Gonzalez MJ, Green R, Muggia FM. Intraperitoneal drug delivery for ovarian cancer: why, how, who, what, and when? Oncology (Williston Park). 2011;25(2):156–165, 170.Google Scholar
  14. 14.
    Markman M, Walker JL. Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J Clin Oncol. 2006;24(6):988–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res. 2010;27(5):735–8.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kondo A, Maeta M, Oka A, Tsujitani S, Ikeguchi M, Kaibara N. Hypotonic intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in mice. Br J Cancer. 1996;73(10):1166–70.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tsujitani S, Oka A, Kondo A, Katano K, Oka S, Saito H, Ikeguchi M, Maeta M, Kaibara N. Administration in a hypotonic solution is preferable to dose escalation in intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in rats. Oncology. 1999;57(1):77–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4(5):277–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Howell SB. Pharmacologic principles of intraperitoneal chemotherapy for the treatment of ovarian cancer. Int J Gynecol Cancer. 2008;18(Suppl 1):20–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release. 2000;69(1):169–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Y, Gong C, Yang L, Wu Q, Shi S, Shi H, Qian Z, Wei Y. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice. BMC Cancer. 2010;10:402.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yu J, Lee HJ, Hur K, Kwak MK, Han TS, Kim WH, Song SC, Yanagihara K, Yang HK. The antitumor effect of a thermosensitive polymeric hydrogel containing paclitaxel in a peritoneal carcinomatosis model. Invest New Drugs. 2012;30(1):1–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–39.PubMedCrossRefGoogle Scholar
  24. 24.
    Kwak MK, Hur K, Yu JE, Han TS, Yanagihara K, Kim WH, Lee SM, Song SC, Yang HK. Suppression of in vivo tumor growth by using a biodegradable thermosensitive hydrogel polymer containing chemotherapeutic agent. Invest New Drugs. 2010;28(3):284–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu W, Liu J, Cao S, Tan H, Li J, Xu F, Zhang X. Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate]. Int J Pharm. 2011;416(1):104–9.PubMedCrossRefGoogle Scholar
  26. 26.
    He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;127(3):189–207.PubMedCrossRefGoogle Scholar
  27. 27.
    Liao YH, Jones SA, Forbes B, Martin GP, Brown MB. Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv. 2005;12(6):327–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamada J, Kitayama J, Tsuno NH, Yamashita H, Miyato H, Soma D, Otani K, Kamei T, Ishigami H, Hidemura A, Kaisaki S, Takahashi K, Nagawa H. Intra-peritoneal administration of paclitaxel with non-animal stabilized hyaluronic acid as a vehicle—a new strategy against peritoneal dissemination of gastric cancer. Cancer Lett. 2008;272(2):307–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem. 1999;10(5):755–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Hahn SK, Kim JS, Shimobouji T. Injectable hyaluronic acid microhydrogels for controlled release formulation of erythropoietin. J Biomed Mater Res A. 2007;80(4):916–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Isayeva I, Sarkar Das S, Chang A, Defoe J, Luu HM, Vorvolakos K, Patwardhan D, Whang J, Pollack S. pH effect on the synthesis, shear properties, and homogeneity of iron-crosslinked hyaluronic acid-based gel/adhesion barrier. J Biomed Mater Res B Appl Biomater. 2010;95(1):9–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Yeo Y, Highley CB, Bellas E, Ito T, Marini R, Langer R, Kohane DS. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials. 2006;27(27):4698–705.PubMedCrossRefGoogle Scholar
  33. 33.
    Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials. 2007;28(6):975–83.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sako A, Kitayama J, Koyama H, Ueno H, Uchida H, Hamada H, Nagawa H. Transduction of soluble Flt-1 gene to peritoneal mesothelial cells can effectively suppress peritoneal metastasis of gastric cancer. Cancer Res. 2004;64(10):3624–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res. 1999;47(2):152–69.PubMedCrossRefGoogle Scholar
  36. 36.
    Jia X, Colombo G, Padera R, Langer R, Kohane DS. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials. 2004;25(19):4797–804.PubMedCrossRefGoogle Scholar
  37. 37.
    Cai S, Xie Y, Davies NM, Cohen MS, Forrest ML. Pharmacokinetics and disposition of a localized lymphatic polymeric hyaluronan conjugate of cisplatin in rodents. J Pharm Sci. 2010;99(6):2664–71.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release. 2012;158(3):386–92.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz AP. CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol. 1999;154(5):1525–37.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Oertl A, Castein J, Engl T, Beecken WD, Jonas D, Melamed R, Blaheta RA. Endothelial adhesion of synchronized gastric tumor cells changes during cell cycle transit and correlates with the expression level of CD44 splice variants. World J Gastroenterol. 2005;11(40):6243–8.PubMedGoogle Scholar
  41. 41.
    De Stefano I, Battaglia A, Zannoni GF, Prisco MG, Fattorossi A, Travaglia D, Baroni S, Renier D, Scambia G, Ferlini C, Gallo D. Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol. 2011;68(1):107–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Zoller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11(4):254–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Auzenne E, Ghosh SC, Khodadadian M, Rivera B, Farquhar D, Price RE, Ravoori M, Kundra V, Freedman RS, Klostergaard J. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia. 2007;9(6):479–86.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Takahashi K, Seki T, Nishikawa K, Minamide S, Iwabuchi M, Ono M, Nagamine S, Horinishi H. Antitumor activity and toxicity of serum protein-bound platinum formed from cisplatin. Jpn J Cancer Res. 1985;76(1):68–74.PubMedGoogle Scholar
  45. 45.
    Yeo Y, Bellas E, Highley CB, Langer R, Kohane DS. Peritoneal adhesion prevention with an in situ cross-linkable hyaluronan gel containing tissue-type plasminogen activator in a rabbit repeated-injury model. Biomaterials. 2007;28(25):3704–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Jeong YI, Kim ST, Jin SG, Ryu HH, Jin YH, Jung TY, Kim IY, Jung S. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J Pharm Sci. 2008;97(3):1268–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Kamei T, Kitayama J, Yamaguchi H, Soma D, Emoto S, Konno T, Ishihara K, Ishigami H, Kaisaki S, Nagawa H. Spatial distribution of intraperitoneally administrated paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) in peritoneal metastatic nodules. Cancer Sci. 2010;102(1):200–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 2000;1(2):208–18.PubMedCrossRefGoogle Scholar
  49. 49.
    Cai S, Xie Y, Bagby TR, Cohen MS, Forrest ML. Intralymphatic chemotherapy using a hyaluronan–cisplatin conjugate. J Surg Res. 2008;147(2):247–52.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Shigenobu Emoto
    • 1
  • Hironori Yamaguchi
    • 1
  • Takao Kamei
    • 1
  • Hironori Ishigami
    • 1
  • Takashi Suhara
    • 2
  • Yukimitsu Suzuki
    • 2
  • Taichi Ito
    • 2
    • 3
  • Joji Kitayama
    • 1
  • Toshiaki Watanabe
    • 1
  1. 1.Department of Surgical OncologyThe University of TokyoTokyoJapan
  2. 2.Department of Chemical System EngineeringThe University of TokyoTokyoJapan
  3. 3.Center for Disease Biology and Integrative MedicineThe University of TokyoTokyoJapan

Personalised recommendations