Surgery Today

, Volume 44, Issue 2, pp 340–348 | Cite as

Effects of duodeno-jejunal bypass on glucose metabolism in obese rats with type 2 diabetes

  • Hirofumi Imoto
  • Chikashi Shibata
  • Fumie Ikezawa
  • Daisuke Kikuchi
  • Soutoku Someya
  • Koh Miura
  • Takeshi Naitoh
  • Michiaki Unno
Original Article

Abstract

Purpose

To evaluate the foregut and hindgut hypotheses for metabolic surgery in obese rats with diabetes.

Methods

Otsuka Long-Evans Tokushima fatty rats were divided into a sham operation group, a partial duodeno-jejunal bypass (P-DJB) group, and a complete DJB (C-DJB) group. P-DJB is a model to test foregut hypothesis, whereas C-DJB is a model to test both hypotheses. We performed oral glucose tolerance tests (OGTT) on all groups at baseline, and then 4 and 8 weeks postoperatively. The rats were killed thereafter and the plasma levels of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) were measured. A separate sub-group of C-DJB rats underwent OGTT after treatment with the GLP-1 antagonist, the PYY antagonist, or saline.

Results

Marked improvement of the blood glucose control during the OGTT was noted 8 weeks after C-DJB, but not 8 weeks after P-DJB or the sham operation. The serum GLP-1 and PYY levels were higher in the C-DJB group than in the other two groups. Pretreatment with the GLP-1 antagonist increased the blood glucose levels 30 min after the OGTT in the C-DJB rats.

Conclusions

Improvement in glucose metabolism after DJB was associated with the inflow of bile and pancreatic juice into the ileum, supporting validity of the hindgut hypothesis. GLP-1 appears to play a role in this improvement.

Keywords

Duodeno-jejunal bypass Glucagon-like peptide-1 Peptide YY 

Notes

Acknowledgments

We thank Dr. Kazuya Kawano from the Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan for the generous gift of the OLETF rats; Ms. Emiko Shibuya for her technical assistance; and Dr. Michael G. Sarr, Department of Surgery, Mayo Clinic, Minnesota, USA, for reviewing this manuscript. This study was supported by a Grant-In-Aid from the Japanese Society for Parenteral and Enteral Nutrition (2009).

Conflict of interest

Hirofumi Imoto and his co-authors have no potential conflicts of interest or financial interest to disclose.

References

  1. 1.
    Deitel M. From bariatric to metabolic surgery in non-obese subjects: time for some caution. Arq Bras Endocrinol Metab. 2009;53:246–51.CrossRefGoogle Scholar
  2. 2.
    Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.PubMedCrossRefGoogle Scholar
  3. 3.
    Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab. 2009;35:518–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89:2608–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Meirelles K, Ahmed T, Culnan DM, Lynch CJ, Lang CH, Cooney RN. Mechanisms of glucose homeostasis after Roux-en-Y gastric bypass surgery in the obese, insulin-resistant Zucker rat. Ann Surg. 2009;249:277–85.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR. Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology. 2010;151:1588–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes. Ann Surg. 2004;239:1–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Strader AD, Vahl TP, Jandacek RJ, Woods SC, D’Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2004;288:E447–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Navarrete SA, Leyba JL, Llopis SN. Laparoscopic sleeve gastrectomy with duodenojejunal bypass for the treatment of type 2 diabetes in non-obese patients: technique and preliminary results. Obes Surg. 2011;21:663–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Johansson H-E, Haenni A, Karlsson FA, Edén-Engström B, Ohrvall M, Sundbom M, et al. Bileopancreatic diversion with duodenal switch lowers both early and late phases of glucose, insulin and proinsulin responses after meal. Obes Surg. 2010;20:549–58.PubMedCrossRefGoogle Scholar
  12. 12.
    Kasama K, Tagaya N, Kanehira E, Oshiro T, Seki Y, Kinouchi M, et al. Laparoscopic sleeve gastrectomy with duodenojejunal bypass: technique and preliminary results. Obes Surg. 2009;19:1341–5.PubMedCrossRefGoogle Scholar
  13. 13.
    De Paula AL, Stival AR, Halpern A, Stefanidis D, Deal SE, Kuwada TS, et al. Improvement in insulin sensitivity and beta-cell function following ileal interposition with sleeve gastrectomy in type 2 diabetic patients: potential mechanisms. J Gastrointest Surg. 2011;15:1344–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Gersin KS, Rothstein RI, Rosenthal RJ, et al. Open-label, sham-controlled trial of an endoscopic duodenojejunal bypass liner for preoperative weight loss in bariatric surgery candidates. Gastrointest Endosc. 2010;71:976–82.PubMedCrossRefGoogle Scholar
  15. 15.
    de Moura EG, Orso IR, Martins Bda C, Lopes GS, de Oliveira SL, Galvão-Neto Mdos P, et al. Improvement of insulin resistance and reduction of cardiovascular risk among obese patients with type 2 diabetes with the duodenojejunal bypass liner. Obes Surg. 2011;21:941–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Schouten R, Rijs CS, Bouvy ND, Hameeteman W, Koek GH, Janssen IM, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251:236–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-Kakizaki rats through an enhanced proglucagon gene expression and L-cell number. Surgery. 2007;142:74–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings BP, Strader AD, Stanhope KL, Graham JL, Lee J, Raybould HE, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138:2437–46.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Culnan DM, Albaugh V, Sun M, Lynch CJ, Lang CH, Cooney RN. Ileal interposition improves glucose tolerance and insulin sensitivity in the obese Zucker rat. Am J Physiol Gastrointest Liver Physiol. 2010;299:G751–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Koopmans HS, Sclafani A, Fichtner C, Aravich PF. The effects of ileal transposition on food intake and body weight loss in VMH-obese rats. Am J Clin Nutr. 1982;35:284–93.PubMedGoogle Scholar
  21. 21.
    Ikezawa F, Shibata C, Kikuchi D, Imoto H, Miura K, Naitoh T, et al. Effects of ileal interposition on glucose metabolism in obese rats with diabetes. Surgery. 2012;151:822–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Pacheco D, de Luis DA, Romero A, González Sagrado M, Conde R, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats. Am J Surg. 2007;194:221–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol. 2011;2011:351982.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Okamoto M, Kohjimoto Y, Iba A, Saji F, Hara I, Shigematsu T. Calcium oxalate crystal deposition in metabolic syndrome model rat kidneys. Int J Urol. 2010;17:996–1003.PubMedCrossRefGoogle Scholar
  26. 26.
    Tanaka T, Kono T, Terasaki F, Yasui K, Soyama A, Otsuka K, et al. Thiamine prevents obesity and obesity-associated metabolic disorders in OLETF rats. J Nutr Sci Vitaminol. 2010;56:335–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsuzaki G, Ishizaka N, Furuta K, Hongo M, Saito K, Sakurai R, et al. Comparison of vasculoprotective effects of benidipine and losartan in a rat model of metabolic syndrome. Eur J Pharmacol. 2008;587:237–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Kawano K, Mori S, Saitoh Y, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long–Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Moran TH, Plata-Salaman CR, Schwartz GJ. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol Regul Integr Comp Physiol. 1998;274:R618–25.Google Scholar
  30. 30.
    Pinilla L, Fernandez–Fernandez R, Roa J, Castellano JM, Tena-Sempere M, Aguilar E. Selective role of neuropeptide Y receptor subtype Y2 in the control of gonadotropin secretion in the rat. Am J Physiol Endocrinol Metab. 2007;293:E1385–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Kindel TL, Yoder SM, D’Alessio DA, Tso P. The Effect of duodenal–jejunal bypass on glucose-dependent insulinotropic polypeptide secretion in Wistar rats. Obes Surg. 2010;20:768–75.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Pedersen SL, Sasikumar PG, Chelur S, Holst B, Artmann A, et al. Peptide hormone isoforms: N-terminally branched PYY3-36 isoforms give improved lipid and fat-cell metabolism in diet-induced obese mice. J Pept Sci. 2010;16:664–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Frezza EE, Chiriva-Internati M, Wachtel MS. Analysis of the results of sleeve gastrectomy for morbid obesity and the role of ghrelin. Surg Today. 2008;38:481–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Ramón JM, Salvans S, Crous X, Puig S, Goday A, Benaiges D, et al. Effect of Roux-en-Y gastric bypass vs sleeve gastrectomy on glucose and gut hormones: a prospective randomised trial. J Gastrointest Surg. 2012;16:1116–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Bjorbaek C. Central leptin receptor action and resistance in obesity. J Investig Med. 2009;57:789–94.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metabol. 2009;297:E1247–59.CrossRefGoogle Scholar
  37. 37.
    Gavin TP, Sloan RC 3rd, Lukosius EZ, Reed MA, Pender JR, Boghossian V, et al. Duodenal–jejunal bypass surgery does not increase skeletal muscle insulin signal transduction or glucose disposal in Goto-Kakizaki type 2 diabetic rats. Obes Surg. 2010;21:231–7.CrossRefGoogle Scholar
  38. 38.
    Rector RS, Uptergrove GM, Morris EM, Borengasser SJ, Laughlin MH, Booth FW, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol. 2011;300:G874–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Hirofumi Imoto
    • 1
  • Chikashi Shibata
    • 1
  • Fumie Ikezawa
    • 1
  • Daisuke Kikuchi
    • 1
  • Soutoku Someya
    • 1
  • Koh Miura
    • 1
  • Takeshi Naitoh
    • 1
  • Michiaki Unno
    • 1
  1. 1.Division of Biological Regulation and Oncology, Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations