Surgery Today

, Volume 44, Issue 4, pp 593–600 | Cite as

MUTYH-associated colorectal cancer and adenomatous polyposis

  • Satoru Yamaguchi
  • Hideo Ogata
  • Daisuke Katsumata
  • Masanobu Nakajima
  • Takaaki Fujii
  • Soichi Tsutsumi
  • Takayuki Asao
  • Kinro Sasaki
  • Hiroyuki Kuwano
  • Hiroyuki Kato
Review Article


MUTYH-associated polyposis (MAP) was first described in 2002. MUTYH is a component of a base excision repair system that protects the genomic information from oxidative damage. When the MUTYH gene product is impaired by bi-allelic germline mutation, it leads to the mutation of cancer-related genes, such as the APC and/or the KRAS genes, via G to T transversion. MAP is a hereditary colorectal cancer syndrome inherited in an autosomal-recessive fashion. The clinical features of MAP include the presence of 10–100 adenomatous polyps in the colon, and early onset of colorectal cancer. Ethnic and geographical differences in the pattern of the MUTYH gene mutations have been suggested. In Caucasian patients, c.536A>G (Y179C) and c.1187G>A (G396D) mutations are frequently detected. In the Asian population, Y179C and G396D are uncommon, whereas other variants are suggested to be the major causes of MAP. We herein review the literature on MUTYH-associated colorectal cancer and adenomatous polyposis.


DNA repair MUTYH gene Adenomatous polyposis MAP Colorectal cancer 


  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Yiu HY, Whittemore AS, Shibata A. Increasing colorectal cancer incidence rates in Japan. Int J Cancer. 2004;109:777–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Vargas AJ, Thompson PA. Diet and nutrient factors in colorectal cancer risk. Nutr Clin Pract. 2012;27:613–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Gala M, Chung DC. Hereditary colon cancer syndromes. Semin Oncol. 2011;38:490–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008;26:5783–8.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–8.PubMedGoogle Scholar
  9. 9.
    Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 2002;62:2447–54.PubMedGoogle Scholar
  10. 10.
    Park J, Betel D, Gryfe R, Michalickova K, Di Nicola N, Gallinger S, et al. Mutation profiling of mismatch repair-deficient colorectal cancers using an in silico genome scan to identify coding microsatellites. Cancer Res. 2002;62:1284–8.PubMedGoogle Scholar
  11. 11.
    Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.PubMedGoogle Scholar
  12. 12.
    Maeda T, Cannom RR, Beart RW Jr, Etzioni DA. Decision model of segmental compared with total abdominal colectomy for colon cancer in hereditary nonpolyposis colorectal cancer. J Clin Oncol. 2010;28:1175–80.PubMedGoogle Scholar
  13. 13.
    Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer. 2003;106:66–73.PubMedGoogle Scholar
  14. 14.
    Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF, Uzzan B. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer. 2009;45:1890–6.Google Scholar
  15. 15.
    Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004;23:6445–70.PubMedGoogle Scholar
  16. 16.
    Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1996;24:121–4.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Bulow S. Results of national registration of familial adenomatous polyposis. Gut. 2003;52:742–6.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMedGoogle Scholar
  20. 20.
    Knudsen AL, Bisgaard ML, Bulow S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer. 2003;2:43–55.PubMedGoogle Scholar
  21. 21.
    Heinimann K, Mullhaupt B, Weber W, Attenhofer M, Scott RJ, Fried M, et al. Phenotypic differences in familial adenomatous polyposis based on APC gene mutation status. Gut. 1998;43:675–9.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Matsumoto T, Iida M, Kobori Y, Mizuno M, Nakamura S, Hizawa K, et al. Genetic predisposition to clinical manifestations in familial adenomatous polyposis with special reference to duodenal lesions. Am J Gastroenterol. 2002;97:180–5.PubMedGoogle Scholar
  23. 23.
    Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76:1–18.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, et al. 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA. 1991;88:4690–4.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.PubMedGoogle Scholar
  26. 26.
    Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem. 1992;267:166–72.PubMedGoogle Scholar
  27. 27.
    Michaels ML, Tchou J, Grollman AP, Miller JH. A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry. 1992;31:10964–8.PubMedGoogle Scholar
  28. 28.
    Aburatani H, Hippo Y, Ishida T, Takashima R, Matsuba C, Kodama T, et al. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997;57:2151–6.PubMedGoogle Scholar
  29. 29.
    Arai K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, et al. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997;14:2857–61.PubMedGoogle Scholar
  30. 30.
    Lu R, Nash HM, Verdine GL. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol. 1997;7:397–407.PubMedGoogle Scholar
  31. 31.
    Rosenquist TA, Zharkov DO, Grollman AP. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci USA. 1997;94:7429–34.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1997;94:8010–5.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Au KG, Clark S, Miller JH, Modrich P. Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proc Natl Acad Sci USA. 1989;86:8877–81.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Slupska MM, Baikalov C, Luther WM, Chiang JH, Wei YF, Miller JH. Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol. 1996;178:3885–92.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 1992;355:273–5.PubMedGoogle Scholar
  36. 36.
    Sakumi K, Furuichi M, Tsuzuki T, Kakuma T, Kawabata S, Maki H, et al. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem. 1993;268:23524–30.PubMedGoogle Scholar
  37. 37.
    Hung RJ, Hall J, Brennan P, Boffetta P. Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol. 2005;162:925–42.PubMedGoogle Scholar
  38. 38.
    Takao M, Zhang QM, Yonei S, Yasui A. Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine:8-oxoguanine DNA glycosylase. Nucleic Acids Res. 1999;27:3638–44.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Shinmura K, Yamaguchi S, Saitoh T, Takeuchi-Sasaki M, Kim SR, Nohmi T, et al. Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA. Nucleic Acids Res. 2000;28:4912–8.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Ohtsubo T, Nishioka K, Imaiso Y, Iwai S, Shimokawa H, Oda H, et al. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 2000;28:1355–64.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Out AA, Tops CM, Nielsen M, Weiss MM, van Minderhout IJ, Fokkema IF, et al. Leiden open variation database of the MUTYH gene. Hum Mutat. 2010;31:1205–15.PubMedGoogle Scholar
  42. 42.
    Yamaguchi S, Shinmura K, Saitoh T, Takenoshita S, Kuwano H, Yokota J. A single nucleotide polymorphism at the splice donor site of the human MYH base excision repair genes results in reduced translation efficiency of its transcripts. Genes Cells. 2002;7:461–74.PubMedGoogle Scholar
  43. 43.
    Tao H, Shinmura K, Hanaoka T, Natsukawa S, Shaura K, Koizumi Y, et al. A novel splice-site variant of the base excision repair gene MYH is associated with production of an aberrant mRNA transcript encoding a truncated MYH protein not localized in the nucleus. Carcinogenesis. 2004;25:1859–66.PubMedGoogle Scholar
  44. 44.
    Torrezan GT, da Silva FC, Krepischi AC, Santos EM, Ferreira Fde O, Rossi BM, et al. Breakpoint characterization of a novel large intragenic deletion of MUTYH detected in a MAP patient: case report. BMC Med Genet. 2011;12:128.Google Scholar
  45. 45.
    Shinmura K, Yamaguchi S, Saitoh T, Kohno T, Yokota J. Somatic mutations and single nucleotide polymorphisms of base excision repair genes involved in the repair of 8-hydroxyguanine in damaged DNA. Cancer Lett. 2001;166:65–9.PubMedGoogle Scholar
  46. 46.
    Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C → T:A mutations. Hum Mol Genet. 2002;11:2961–7.PubMedGoogle Scholar
  47. 47.
    Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348:791–9.PubMedGoogle Scholar
  48. 48.
    Jones S, Lambert S, Williams GT, Best JM, Sampson JR, Cheadle JP. Increased frequency of the k-ras G12C mutation in MYH polyposis colorectal adenomas. Br J Cancer. 2004;90:1591–3.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Nielsen M, de Miranda NF, van Puijenbroek M, Jordanova ES, Middeldorp A, van Wezel T, et al. Colorectal carcinomas in MUTYH-associated polyposis display histopathological similarities to microsatellite unstable carcinomas. BMC Cancer. 2009;9:184.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Boparai KS, Dekker E, Van Eeden S, Polak MM, Bartelsman JF, Mathus-Vliegen EM, et al. Hyperplastic polyps and sessile serrated adenomas as a phenotypic expression of MYH-associated polyposis. Gastroenterology. 2008;135:2014–8.PubMedGoogle Scholar
  51. 51.
    Farrington SM, Tenesa A, Barnetson R, Wiltshire A, Prendergast J, Porteous M, et al. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet. 2005;77:112–9.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS. Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol. 2009;27:3975–80.PubMedGoogle Scholar
  53. 53.
    Theodoratou E, Campbell H, Tenesa A, Houlston R, Webb E, Lubbe S, et al. A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer. 2010;103:1875–84.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Plotz G, Casper M, Raedle J, Hinrichsen I, Heckel V, Brieger A, et al. MUTYH gene expression and alternative splicing in controls and polyposis patients. Hum Mutat. 2012;33:1067–74.PubMedGoogle Scholar
  55. 55.
    Sakamoto K, Tominaga Y, Yamauchi K, Nakatsu Y, Sakumi K, Yoshiyama K, et al. MUTYH-null mice are susceptible to spontaneous and oxidative stress induced intestinal tumorigenesis. Cancer Res. 2007;67:6599–604.PubMedGoogle Scholar
  56. 56.
    Cleary SP, Cotterchio M, Jenkins MA, Kim H, Bristow R, Green R, et al. Germline MutY human homologue mutations and colorectal cancer: a multisite case–control study. Gastroenterology. 2009;136:1251–60.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG, et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet. 2003;362:39–41.PubMedGoogle Scholar
  58. 58.
    Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, et al. Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer. 2004;109:680–4.PubMedGoogle Scholar
  59. 59.
    Venesio T, Molatore S, Cattaneo F, Arrigoni A, Risio M, Ranzani GN. High frequency of MYH gene mutations in a subset of patients with familial adenomatous polyposis. Gastroenterology. 2004;126:1681–5.PubMedGoogle Scholar
  60. 60.
    Nielsen M, Joerink-van de Beld MC, Jones N, Vogt S, Tops CM, Vasen HF, et al. Analysis of MUTYH genotypes and colorectal phenotypes in patients with MUTYH-associated polyposis. Gastroenterology. 2009;136:471–6.Google Scholar
  61. 61.
    Yanaru-Fujisawa R, Matsumoto T, Ushijima Y, Esaki M, Hirahashi M, Gushima M, et al. Genomic and functional analyses of MUTYH in Japanese patients with adenomatous polyposis. Clin Genet. 2008;73:545–53.PubMedGoogle Scholar
  62. 62.
    Ali M, Kim H, Cleary S, Cupples C, Gallinger S, Bristow R. Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology. 2008;135:499–507.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Miyaki M, Iijima T, Yamaguchi T, Hishima T, Tamura K, Utsunomiya J, et al. Germline mutations of the MYH gene in Japanese patients with multiple colorectal adenomas. Mutat Res. 2005;578:430–3.PubMedGoogle Scholar
  64. 64.
    Bai H, Jones S, Guan X, Wilson TM, Sampson JR, Cheadle JP, et al. Functional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis. Nucleic Acids Res. 2005;33:597–604.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Giraldez MD, Balaguer F, Caldes T, Sanchez-de-Abajo A, Gomez-Fernandez N, Ruiz-Ponte C, et al. Association of MUTYH and MSH6 germline mutations in colorectal cancer patients. Fam Cancer. 2009;8:525–31.PubMedGoogle Scholar
  66. 66.
    Kim DW, Kim IJ, Kang HC, Jang SG, Kim K, Yoon HJ, et al. Germline mutations of the MYH gene in Korean patients with multiple colorectal adenomas. Int J Colorectal Dis. 2007;22:1173–8.PubMedGoogle Scholar
  67. 67.
    Kim JC, Ka IH, Lee YM, Koo KH, Kim HC, Yu CS, et al. MYH, OGG1, MTH1, and APC alterations involved in the colorectal tumorigenesis of Korean patients with multiple adenomas. Virchows Arch. 2007;450:311–9.PubMedGoogle Scholar
  68. 68.
    Goto M, Shinmura K, Nakabeppu Y, Tao H, Yamada H, Tsuneyoshi T, et al. Adenine DNA glycosylase activity of 14 human MutY homolog (MUTYH) variant proteins found in patients with colorectal polyposis and cancer. Hum Mutat. 2010;31:E1861–74.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Picelli S, Zajac P, Zhou XL, Edler D, Lenander C, Dalen J, et al. Common variants in human CRC genes as low-risk alleles. Eur J Cancer. 2010;46:1041–8.PubMedGoogle Scholar
  70. 70.
    Kasahara M, Osawa K, Yoshida K, Miyaishi A, Osawa Y, Inoue N, et al. Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population. J Exp Clin Cancer Res. 2008;27:49.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Miyaishi A, Osawa K, Osawa Y, Inoue N, Yoshida K, Kasahara M, et al. MUTYH Gln324His gene polymorphism and genetic susceptibility for lung cancer in a Japanese population. J Exp Clin Cancer Res. 2009;28:10.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Kuno T, Matsubara N, Tsuda S, Kobayashi M, Hamanaka M, Yamagishi D, et al. Alterations of the base excision repair gene MUTYH in sporadic colorectal cancer. Oncol Rep. 2012;28:473–80.PubMedGoogle Scholar
  73. 73.
    Raetz AG, Xie Y, Kundu S, Brinkmeyer MK, Chang C, David SS. Cancer-associated variants and a common polymorphism of MUTYH exhibit reduced repair of oxidative DNA damage using a GFP-based assay in mammalian cells. Carcinogenesis. 2012;33:2301–9.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Out AA, Wasielewski M, Huijts PE, van Minderhout IJ, Houwing-Duistermaat JJ, Tops CM, et al. MUTYH gene variants and breast cancer in a Dutch case–control study. Breast Cancer Res Treat. 2012;134:219–27.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J Biol Chem. 2001;276:5547–55.PubMedGoogle Scholar
  76. 76.
    Hayashi H, Tominaga Y, Hirano S, McKenna AE, Nakabeppu Y, Matsumoto Y. Replication-associated repair of adenine:8-oxoguanine mispairs by MYH. Curr Biol. 2002;12:335–9.PubMedGoogle Scholar
  77. 77.
    Jones N, Vogt S, Nielsen M, Christian D, Wark PA, Eccles D, et al. Increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology. 2009;137:489–94.PubMedGoogle Scholar
  78. 78.
    Win AK, Cleary SP, Dowty JG, Baron JA, Young JP, Buchanan DD, et al. Cancer risks for monoallelic MUTYH mutation carriers with a family history of colorectal cancer. Int J Cancer. 2011;129:2256–62.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Morak M, Laner A, Bacher U, Keiling C, Holinski-Feder E. MUTYH-associated polyposis—variability of the clinical phenotype in patients with biallelic and monoallelic MUTYH mutations and report on novel mutations. Clin Genet. 2010;78:353–63.PubMedGoogle Scholar
  80. 80.
    Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 2003;63:7595–9.PubMedGoogle Scholar
  81. 81.
    Nielsen M, Poley JW, Verhoef S, van Puijenbroek M, Weiss MM, Burger GT, et al. Duodenal carcinoma in MUTYH-associated polyposis. J Clin Pathol. 2006;59:1212–5.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Aretz S, Uhlhaas S, Goergens H, Siberg K, Vogel M, Pagenstecher C, et al. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer. 2006;119:807–14.PubMedGoogle Scholar
  83. 83.
    Nielsen M, Franken PF, Reinards TH, Weiss MM, Wagner A, van der Klift H, et al. Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet. 2005;42:e54.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Vasen HF, Moslein G, Alonso A, Aretz S, Bernstein I, Bertario L, et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut. 2008;57:704–13.PubMedGoogle Scholar
  85. 85.
    Nieuwenhuis MH, Vogt S, Jones N, Nielsen M, Hes FJ, Sampson JR, et al. Evidence for accelerated colorectal adenoma–carcinoma progression in MUTYH-associated polyposis? Gut. 2012;61:734–8.PubMedGoogle Scholar
  86. 86.
    Nielsen M, van Steenbergen LN, Jones N, Vogt S, Vasen HF, Morreau H, et al. Survival of MUTYH-associated polyposis patients with colorectal cancer and matched control colorectal cancer patients. J Natl Cancer Inst. 2010;102:1724–30.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Shinmura K, Goto M, Suzuki M, Tao H, Yamada H, Igarashi H, et al. Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer. J Pathol. 2011;225:414–23.PubMedGoogle Scholar
  88. 88.
    Tao H, Shinmura K, Suzuki M, Kono S, Mibu R, Tanaka M, et al. Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. Cancer Sci. 2008;99:355–60.PubMedGoogle Scholar
  89. 89.
    Halford SE, Rowan AJ, Lipton L, Sieber OM, Pack K, Thomas HJ, et al. Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol. 2003;162:1545–8.PubMedCentralPubMedGoogle Scholar
  90. 90.
    den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15:7–12.Google Scholar
  91. 91.
    den Dunnen JT, Antonarakis SE. Nomenclature for the description of human sequence variations. Hum Genet. 2001;109:121–4.Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Satoru Yamaguchi
    • 1
    • 2
  • Hideo Ogata
    • 1
  • Daisuke Katsumata
    • 1
  • Masanobu Nakajima
    • 1
  • Takaaki Fujii
    • 2
  • Soichi Tsutsumi
    • 2
  • Takayuki Asao
    • 2
  • Kinro Sasaki
    • 1
  • Hiroyuki Kuwano
    • 2
  • Hiroyuki Kato
    • 1
  1. 1.Department of Surgical OncologyDokkyo Medical UniversityMibu Japan
  2. 2.Department of General Surgical ScienceGunma University Graduate School, Graduate School of MedicineMaebashiJapan

Personalised recommendations