Surgery Today

, Volume 43, Issue 12, pp 1439–1447 | Cite as

A lectin array analysis for wild-type and α-Gal-knockout pig islets versus healthy human islets

  • Shuji Miyagawa
  • Akira Maeda
  • Shunsaku Takeishi
  • Takehisa Ueno
  • Noriaki Usui
  • Shinichi Matsumoto
  • Teru Okitsu
  • Masafumi Goto
  • Hiroshi Nagashima
Original Article

Abstract

Purpose

We performed lectin microarray analyses of islets from wild-type (WT) pigs and α1-3galactosyltransferase gene knockout (GKO) pigs and compared the results with the corresponding values for islets from healthy humans.

Methods

Islets were isolated from the pancreas. After sonication and centrifugation, the proteins in the supernatant from each islet were labeled with Cy3 and applied to a lectin array.

Results

Despite negligible expression of the Gal antigen on the adult pig islets (APIs), GKO-islets showed weaker signals, not only for GS-I-B4 but also for PNA, WFA, PTL-I, and GS-I-A4, than the WT islets, indicating reduced contents of α-linked GalNAc and Galβ1-3GalNAc. In comparing the islets of pigs vs. humans, human islets showed stronger signals for UEA-I, AAL, TJA-II, EEL, WFA, HPA, DBA, SBA and PTL-I, indicating that besides ABO blood type antigens, high levels of fucose and α-linked GalNAc are present. On the other hand, the high mannose form was very rich in the APIs.

Conclusion

GKO reduced alpha-linked GalNAc, despite negligible expression of the Gal antigen on WT-API. On the other hand, the high-mannose form was richer in both APIs than in healthy human islets. These results provide useful information for future studies.

Keywords

Xenotransplantation Glycoantigen Lectin array Islets 

Abbreviations

WT

Wild-type

GKO

The α-Gal knockout

API

Adult pig islets

H–D

Hanganutziu–Deicher

References

  1. 1.
    Miyagawa S, Yamamoto A, Matsunami K, Matsunami K, Wang D, Takama Y, et al. Complement regulation in the GalT KO era. Xenotransplantation. 2010;17:11–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyagawa S, Takama Y, Nagashima H, Ueno T, Fukuzawa M. Carbohydrate antigens. Curr Opin Organ Transpl. 2012;17:174–9.CrossRefGoogle Scholar
  3. 3.
    Galili U, Clark MR, Shohet SB, Buehler J, Macher BA. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1-3Gal epitope in primates. Proc Natl Acad Sci USA. 1987;84:1369–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Elliott RB. Towards xenotransplantation of pig islets in the clinic. Curr Opin Organ Transpl. 2011;16:195–200.CrossRefGoogle Scholar
  5. 5.
    Omori T, Nishida T, Komoda H, Fumimoto Y, Ito T, Sawa Y, et al. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. Xenotransplantation. 2006;13:455–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Komoda H, Miyagawa S, Kubo T, Kitano E, Kitamura H, Omori T, et al. A study of the xenoantigenicity of adult pig islets cells. Xenotransplantation. 2004;11:237–46.PubMedCrossRefGoogle Scholar
  7. 7.
    Tomii R, Kurome M, Ochiai T, Wako N, Ueda H, Hirakawa K, et al. Production of cloned pigs by nuclear transfer of preadipocytes established from adult mature adipocytes. Cloning Stem Cell. 2005;7:279–88.CrossRefGoogle Scholar
  8. 8.
    Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, et al. Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20:251–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, et al. Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev. 2005;71:331–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Miyagawa S, Murakami H, Takahagi Y, Nakai R, Yamada M, Murase A, et al. Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem. 2001;276:39310–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Goto M, Eich TM, Felldin M, Foss A, Källen R, Salmela K, et al. Refinement of the automated method for human islet isolation and presentation of a closed system for in vitro islet culture. Transplantation. 2004;78:1367–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Goto M, Yoshikawa Y, Matsuo K, Shirasu A, Ogawa N, Takahashi H, et al. Optimization of a prominent oxygen-permeable device for pancreatic islets. Transpl Proc. 2008;40:411–2.CrossRefGoogle Scholar
  13. 13.
    Matsumoto S, Okitsu T, Iwanaga Y, Noguchi H, Nagata H, Yonekawa Y, et al. Successful islet transplantation from non-heartbeating donor pancreata using modified Ricordi islet isolation method. Transplantation. 2006;82:460–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Matsumoto S, Qualley SA, Goel S, Hagman DK, Sweet IR, Poitout V, et al. Effect of the two-layer (University of Wisconsin solution-perfluorochemical plus O2) method of pancreas preservation method on human islet isolation, as assessed by the Edmonton isolation protocol. Transplantation. 2002;74:1414–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ricordi C, Lacy PE, Scharp DW. Automated islet isolation from human pancreas. Diabetes. 1989;38(Suppl 1):140–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods. 2005;2:851–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, et al. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology. 2007;17:1138–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Miyagawa S, Takeishi S, Yamamoto A, Ikeda K, Matsunari H, Yamada M, et al. Survey of glycoantigens in cells from a1-3galactosyltransferase knockout pig using a lectin microarray. Xenotransplantation. 2004;11:237–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Blixt O, Kumagai-Braesch M, Tibell A, Groth CG, Holgersson J. Anticarbohydrate antibody repertoires in patients transplanted with fetal pig islets revealed by glycan arrays. Am J Transpl. 2009;9:83–90.CrossRefGoogle Scholar
  22. 22.
    Ezzelarab M, Ayares D, Cooper DK. Carbohydrates in xenotransplantation. Immunol Cell Biol. 2005;83:396–404.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu A. Binding of human natural antibodies to nonalphaGal xenoantigens on porcine erythrocytes. Transplantation. 2000;69:2422–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J. 2009;26:231–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Ikeda K, Yamamoto A, Nanjo A, Inuinaka C, Takama Y, Ueno T, et al. A cloning of cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) hydroxylase from porcine endothelial cell. Transpl Proc. 2012;44:1136–8.Google Scholar
  26. 26.
    Diswall M, Schuurman HJ, Dor F, Rydberg L, Breimer ME. Biochemical studies of Gal antigens in small intestine and pancreas from alpha 1,3-galactosyltransferase knock-out miniature swine. Xenotransplantation. 2005;12:407–8.Google Scholar
  27. 27.
    Kim YG, Gil GC, Harvey DJ, Kim BG. Structural analysis of alpha-Gal and new non-Gal carbohydrate epitopes from specific pathogen-free miniature pig kidney. Proteomics. 2008;8:2596–610.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto A, Ikeda K, Wang D, Nakatsu S, Takama Y, Ueno T, et al. Trial using pig cells with the H-D antigen knocked down. Surg Today (in press).Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Shuji Miyagawa
    • 1
  • Akira Maeda
    • 1
  • Shunsaku Takeishi
    • 2
  • Takehisa Ueno
    • 1
  • Noriaki Usui
    • 1
  • Shinichi Matsumoto
    • 3
  • Teru Okitsu
    • 4
  • Masafumi Goto
    • 5
  • Hiroshi Nagashima
    • 6
  1. 1.Division of Organ Transplantation, Department of SurgeryOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Glycomics Research Laboratory, Moritex CorporationYokohamaJapan
  3. 3.National Center for Global Health and MedicineTokyoJapan
  4. 4.Institute of Industrial Science, University of TokyoTokyoJapan
  5. 5.Tohoku University International Advanced Research and Education Organization, Tohoku UniversitySendaiJapan
  6. 6.Laboratory of Developmental Engineering, Department of Life ScienceMeiji UniversityKanagawaJapan

Personalised recommendations