Advertisement

Glycemic variability indices can be used to diagnose islet transplantation success in type 1 diabetic patients

  • Manon JalbertEmail author
  • Fei Zheng
  • Anne Wojtusciszyn
  • Florence Forbes
  • Stéphane Bonnet
  • Kristina Skaare
  • Pierre-Yves Benhamou
  • Sandrine Lablanche
  • TRIMECO Study Group
Original Article
  • 71 Downloads

Abstract

Aims

High glycemic variability (GV) is the major indication for islet transplantation (IT) in patients with type 1 diabetes (T1D). The actual criteria used to assess graft function do not consider GV improvement. Our study aimed to describe GV indices’ evolution in T1D patients who benefited from IT during the TRIMECO trial and to evaluate if thresholds might be defined to diagnose IT success.

Methods

We collected data from 29 patients of the TRIMECO trial, a clinical trial (NCT01148680) comparing the metabolic efficacy of IT with intensive insulin therapy. Based on CGM data, we analyzed mean glucose level and four GV indices (standard deviation, coefficient of variation, MAGE and GVP) before (M0) and 6 months (M6) after IT.

Results

Each GV index decreased significantly between M0 and M6: SD 53.9 mg/dL [44.6–61.5] versus 20.1 mg/dL [13.5–24.3]; CV 35.2% [30.6–37.7] versus 17.3% [12.0–20.5]; MAGE 134.9 mg/dl [111.2–155.8] versus 51.9 mg/dL [32.4–62.4]; GVP 35.3% [24.9–47.2] versus 12.2% [6.2–18.8] (p ≤ 0.0001). Thresholds diagnosing IT success at 6 months post-transplant were an SD at 22.76 mg/dL (sensibility 88.89%, specificity 80.00%), a CV at 17.47% (sensibility 88.89%, specificity 70.00%), a MAGE at 54.81 mg/dL (sensibility 88.89%, specificity 80.00%) and a GVP at 12.27% (sensibility 88.89%, specificity 70.00%).

Conclusions

This study confirms a positive impact of IT on GV. The proposed thresholds allow an easy evaluation of IT success using only CGM data and may be a clinical tool for the follow-up of transplanted patients.

Keywords

Glycemic variability Islet transplantation Continuous glucose monitoring Brittle diabetes 

Abbreviations

CGM

Continuous glucose monitoring

CV

Coefficient of variation

GV

Glycemic variability

GVP

Glycemic variability percentage

HbA1c

Glycated hemoglobin

IT

Islet transplantation

MAGE

Mean amplitude glycemic excursion

ROC curve

Receiver operating characteristic curve

SD

Standard deviation

Se

Sensibility

Spe

Specificity

T1D

Type 1 diabetes

TIR

Time in range

Notes

Funding source

This work was supported by a Research Year Scholarship from Grenoble Alpes University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The institutional review board approved the study (French Committee for the Protection of Persons participating in biomedical research “Sud-Est V”; no 09-CHUG-21) and Clinical Trial Authorization was obtained from the French National Competent Authority (ANSM-no 2008-A01554-51).

Informed consent

Informed consent was obtained from the patients included in this study.

References

  1. 1.
    Hirsch IB (2005) Glycemic variability: it’s not just about A1C anymore! Diabetes Technol Ther 7(5):780–783PubMedCrossRefGoogle Scholar
  2. 2.
    Ceriello A, Monnier L, Owens D (2019) Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol 7(3):221–230PubMedCrossRefGoogle Scholar
  3. 3.
    Guerci B (2003) Asymptomatic glycemic instability: How to measure it and which clinical applications? Diabetes Metab 29(2 Pt 1):179–188PubMedCrossRefGoogle Scholar
  4. 4.
    Saisho Y (2014) Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci 15(10):18381–18406PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rodbard D (2009) Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther 11(Suppl 1):S55–S67PubMedCrossRefGoogle Scholar
  6. 6.
    Fabris C, Facchinetti A, Sparacino G et al (2014) Glucose variability indices in type 1 diabetes: parsimonious set of indices revealed by sparse principal component analysis. Diabetes Technol Ther 16(10):644–652PubMedCrossRefGoogle Scholar
  7. 7.
    Miller KM, Foster NC, Beck RW et al (2015) Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry. Diabetes Care 38(6):971–978PubMedCrossRefGoogle Scholar
  8. 8.
    Gill GV (1992) The spectrum of brittle diabetes. J R Soc Med 85(5):259–261PubMedPubMedCentralGoogle Scholar
  9. 9.
    Benhamou PY, Milliat-Guittard L, Wojtusciszyn A et al (2009) Quality of life after islet transplantation: data from the GRAGIL 1 and 2 trials. Diabet Med J Br Diabet Assoc 26(6):617–621CrossRefGoogle Scholar
  10. 10.
    Kent LA, Gill GV, Williams G (1994) Mortality and outcome of patients with brittle diabetes and recurrent ketoacidosis. Lancet Lond Engl 344(8925):778–781CrossRefGoogle Scholar
  11. 11.
    Wojtusciszyn A, Branchereau J, Esposito L, et al (2019) Indications for islet or pancreatic transplantation: statement of the TREPID working group on behalf of the Société francophone du diabète (SFD), Société francaise d’endocrinologie (SFE), Société francophone de transplantation (SFT) and Société française de néphrologie-dialyse-transplantation (SFNDT). Diabetes Metab 45(3):224–237PubMedCrossRefGoogle Scholar
  12. 12.
    CITR 9th annual report | CITR [Internet]. [cited 2018 May 2]. Available from: https://citregistry.org/content/citr-9th-annual-report. Accessed 2 May 2018
  13. 13.
    Lablanche S, Vantyghem M-C, Kessler L et al (2018) Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol 6(7):527–537PubMedCrossRefGoogle Scholar
  14. 14.
    Ryan EA, Paty BW, Senior PA, Lakey JRT, Bigam D, Shapiro AMJ (2005) Beta-score: an assessment of beta-cell function after islet transplantation. Diabetes Care 28(2):343–347PubMedCrossRefGoogle Scholar
  15. 15.
    Rickels MR, Stock PG, de Koning EJP et al (2018) Defining outcomes for β-cell replacement therapy in the treatment of diabetes: a consensus report on the igls criteria from the IPITA/EPITA opinion leaders workshop. Transplantation 102(9):1479–1486PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Scheiner G (2016) CGM retrospective data analysis. Diabetes Technol Ther 18(Suppl 2):S2-14–S2-22CrossRefGoogle Scholar
  17. 17.
    Monnier L, Colette C, Wojtusciszyn A et al (2017) Toward defining the threshold between low and high glucose variability in diabetes. Diabetes Care 40(7):832–838PubMedCrossRefGoogle Scholar
  18. 18.
    Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF (1970) Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19(9):644–655PubMedCrossRefGoogle Scholar
  19. 19.
    Su G, Mi S, Tao H et al (2013) Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. Diabetes Care 36(4):1026–1032PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Peyser TA, Balo AK, Buckingham BA, Hirsch IB, Garcia A (2018) Glycemic variability percentage: a novel method for assessing glycemic variability from continuous glucose monitor data. Diabetes Technol Ther 20(1):6–16PubMedCrossRefGoogle Scholar
  21. 21.
    Vantyghem M-C, Raverdy V, Balavoine A-S et al (2012) Continuous glucose monitoring after islet transplantation in type 1 diabetes: an excellent graft function (β-score greater than 7) Is required to abrogate hyperglycemia, whereas a minimal function is necessary to suppress severe hypoglycemia (β-score greater than 3). J Clin Endocrinol Metab 97(11):E2078–E2083PubMedCrossRefGoogle Scholar
  22. 22.
    Kessler L, Passemard R, Oberholzer J et al (2002) Reduction of blood glucose variability in type 1 diabetic patients treated by pancreatic islet transplantation: interest of continuous glucose monitoring. Diabetes Care 25(12):2256–2262PubMedCrossRefGoogle Scholar
  23. 23.
    Ryan EA, Lakey JR, Rajotte RV et al (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50(4):710–719PubMedCrossRefGoogle Scholar
  24. 24.
    Brooks AM, Oram R, Home P, Steen N, Shaw JAM (2015) Demonstration of an intrinsic relationship between endogenous C-peptide concentration and determinants of glycemic control in type 1 diabetes following islet transplantation. Diabetes Care 38(1):105–112PubMedCrossRefGoogle Scholar
  25. 25.
    Geiger MC, Ferreira JV, Hafiz MM et al (2005) Evaluation of metabolic control using a continuous subcutaneous glucose monitoring system in patients with type 1 diabetes mellitus who achieved insulin independence after islet cell transplantation. Cell Transplant 14(2–3):77–84PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou J, Li H, Ran X et al (2011) Establishment of normal reference ranges for glycemic variability in Chinese subjects using continuous glucose monitoring. Med Sci Monit Int Med J Exp Clin Res 17(1):CR9–CR13Google Scholar
  27. 27.
    Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR (2011) Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther 13(9):921–928PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Reddy M, Godsland IF, Barnard KD et al (2015) Glycemic variability and its impact on quality of life in adults with type 1 diabetes. J Diabetes Sci Technol 10(1):60–66PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Siegelaar SE, Kilpatrick ES, Rigby AS, Atkin SL, Hoekstra JBL, Devries JH (2009) Glucose variability does not contribute to the development of peripheral and autonomic neuropathy in type 1 diabetes: data from the DCCT. Diabetologia 52(10):2229–2232PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Benhamou PY, Somers F, Lablanche S et al (2014) Impact of flexible insulin therapy on blood glucose variability, oxidative stress and inflammation in type 1 diabetic patients: the VARIAFIT study. Diabetes Metab 40(4):278–283PubMedCrossRefGoogle Scholar
  31. 31.
    Rodbard D (2011) Clinical interpretation of indices of quality of glycemic control and glycemic variability. Postgrad Med 123(4):107–118PubMedCrossRefGoogle Scholar
  32. 32.
    Crenier L, Lytrivi M, Van Dalem A, Keymeulen B, Corvilain B (2016) Glucose complexity estimates insulin resistance in either nondiabetic individuals or in type 1 diabetes. J Clin Endocrinol Metab 101(4):1490–1497PubMedCrossRefGoogle Scholar
  33. 33.
    Hanefeld M, Koehler C, Hoffmann C, Wilhelm K, Kamke W, Gerstein H (2010) Effect of targeting normal fasting glucose levels with basal insulin glargine on glycaemic variability and risk of hypoglycaemia: a randomized, controlled study in patients with early Type 2 diabetes. Diabet Med J Br Diabet Assoc 27(2):175–180CrossRefGoogle Scholar
  34. 34.
    Gude F, Díaz-Vidal P, Rúa-Pérez C et al (2017) Glycemic variability and its association with demographics and lifestyles in a general adult population. J Diabetes Sci Technol 11(4):780–790PubMedCrossRefGoogle Scholar
  35. 35.
    Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Fox LA, Beck RW, Xing D (2010) Variation of interstitial glucose measurements assessed by continuous glucose monitors in healthy, nondiabetic individuals. Diabetes Care 33(6):1297–1299PubMedCentralCrossRefGoogle Scholar
  36. 36.
    Danne T, Nimri R, Battelino T et al (2017) International consensus on use of continuous glucose monitoring. Diabetes Care 40(12):1631–1640PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bergenstal RM, Ahmann AJ, Bailey T et al (2013) Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the ambulatory glucose profile. J Diabetes Sci Technol 7(2):562–578PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  • Manon Jalbert
    • 1
    Email author
  • Fei Zheng
    • 2
    • 4
  • Anne Wojtusciszyn
    • 3
  • Florence Forbes
    • 2
    • 4
  • Stéphane Bonnet
    • 2
    • 4
  • Kristina Skaare
    • 5
  • Pierre-Yves Benhamou
    • 1
  • Sandrine Lablanche
    • 1
  • TRIMECO Study Group
    • 1
  1. 1.Department of Endocrinology, Diabetes and NutritionGrenoble Alpes University HospitalGrenobleFrance
  2. 2.Inria, CNRS, Grenoble INP, LJKGrenoble Alpes UniversityGrenobleFrance
  3. 3.Department of Endocrinology, Diabetes and NutritionMontpellier University HospitalMontpellierFrance
  4. 4.CEA LETI, DTBSUniv. Grenoble AlpesGrenobleFrance
  5. 5.Department of Public HealthGrenoble Alpes UniversityGrenobleFrance

Personalised recommendations