Advertisement

Acta Diabetologica

, Volume 56, Issue 9, pp 981–994 | Cite as

New imaging systems in diabetic retinopathy

  • Maria Vittoria Cicinelli
  • Michele Cavalleri
  • Maria Brambati
  • Rosangela Lattanzio
  • Francesco BandelloEmail author
Review Article
Part of the following topical collections:
  1. Eye Complications of Diabetes

Abstract

Various imaging modalities are of significant utility in the screening, grading, treatment, and follow-up of the different stages of diabetic retinopathy (DR) and diabetic macular edema. Color stereographic photography, fluorescein angiography, and optical coherence tomography (OCT) have been the gold standard for DR imaging for years. Besides these tools, newer technologies are gaining validation and popularity, such as fundus autofluorescence and OCT angiography. Furthermore, widefield retinography and ultra-widefield retinography have been introduced for a more comprehensive evaluation of the medium-far and very-far retinal peripheries, which is crucial for the assessment of the diverse manifestations of the disease. The aim of this review is to illustrate the recent advancements of the imaging systems for diagnosing DR, with a focus on the newest and noninvasive diagnostic tools.

Keywords

Diabetic retinopathy Diabetic macular edema OCT angiography Imaging techniques Ultra-widefield imaging 

Notes

Compliance with ethical standards

Conflict of interest

Maria Vittoria Cicinelli, Michele Cavalleri, Maria Brambati, Rosangela Lattanzio: declare that they have no conflict of interest. Francesco Bandello consultant for: Alcon (Fort Worth,Texas,USA), Alimera Sciences (Alpharetta, Georgia, USA), Allergan Inc (Irvine, California,USA), Farmila-Thea (Clermont-Ferrand, France), Bayer Shering-Pharma (Berlin, Germany), Bausch And Lomb (Rochester, New York, USA), Genentech (San Francisco, California, USA), Hoffmann-La-Roche (Basel, Switzerland), NovagaliPharma (Évry, France), Novartis (Basel, Switzerland), Sanofi-Aventis (Paris, France), Thrombogenics (Heverlee, Belgium), Zeiss (Dublin, USA). 

Ethical standard

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Rathmann W, Giani G (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(10):2568–2569 (author reply 2569) CrossRefGoogle Scholar
  2. 2.
    Leasher JL, Bourne RR, Flaxman SR et al (2016) Erratum. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39:1643–1649.  https://doi.org/10.2337/dc16-er11 (Diabetes Care 39 (11):2096) CrossRefPubMedGoogle Scholar
  3. 3.
    Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health.  https://doi.org/10.1016/s2214-109x(17)30393-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Bourne RRA, Flaxman SR, Braithwaite T et al (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5(9):e888–e897.  https://doi.org/10.1016/S2214-109X(17)30293-0 CrossRefGoogle Scholar
  5. 5.
    Tong L, Vernon SA, Kiel W, Sung V, Orr GM (2001) Association of macular involvement with proliferative retinopathy in type 2 diabetes. Diabet Med 18(5):388–394CrossRefGoogle Scholar
  6. 6.
    Stefansson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78(4):374–385CrossRefGoogle Scholar
  7. 7.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Classification of diabetic retinopathy from fluorescein angiograms ETDRS report number 11. Ophthalmology 98(5 Suppl):807–822Google Scholar
  8. 8.
    Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW (2018) Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Investig Ophthalmol Vis Sci 59(1):519–527.  https://doi.org/10.1167/iovs.17-21873 CrossRefGoogle Scholar
  9. 9.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology 98(5 Suppl):823–833Google Scholar
  10. 10.
    Rabiolo A, Parravano M, Querques L et al (2017) Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol 11:803–807.  https://doi.org/10.2147/OPTH.S133637 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ghasemi Falavarjani K, Tsui I, Sadda SR (2017) Ultra-wide-field imaging in diabetic retinopathy. Vis Res 139:187–190.  https://doi.org/10.1016/j.visres.2017.02.009 CrossRefPubMedGoogle Scholar
  12. 12.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 98(5 Suppl):786–806Google Scholar
  13. 13.
    Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG (2005) Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol 123(2):244–252.  https://doi.org/10.1001/archopht.123.2.244 CrossRefPubMedGoogle Scholar
  14. 14.
    Reeves GM, Kumar N, Beare NA, Pearce IA (2013) Use of Staurenghi lens angiography in the management of posterior uveitis. Acta Ophthalmol 91(1):48–51.  https://doi.org/10.1111/j.1755-3768.2011.02200.x CrossRefPubMedGoogle Scholar
  15. 15.
    Pomerantzeff O (1980) Wide-angle noncontact and small-angle contact cameras. Investig Ophthalmol Vis Sci 19(8):973–979Google Scholar
  16. 16.
    Spaide RF (2011) Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina 31(5):829–837.  https://doi.org/10.1097/IAE.0b013e31820c841e CrossRefGoogle Scholar
  17. 17.
    Witmer MT, Parlitsis G, Patel S, Kiss S (2013) Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis((R)) noncontact ultra-widefield module versus the Optos((R)) Optomap((R)). Clin Ophthalmol 7:389–394.  https://doi.org/10.2147/OPTH.S41731 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Silva PS, Cavallerano JD, Sun JK, Noble J, Aiello LM, Aiello LP (2012) Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. Am J Ophthalmol 154(3):549–559.  https://doi.org/10.1016/j.ajo.2012.03.019 CrossRefPubMedGoogle Scholar
  19. 19.
    Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S (2012) Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 32(4):785–791.  https://doi.org/10.1097/IAE.0b013e3182278b64 CrossRefGoogle Scholar
  20. 20.
    Silva PS, Cavallerano JD, Tolls D et al (2014) Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care 37(1):50–55.  https://doi.org/10.2337/dc13-1292 CrossRefPubMedGoogle Scholar
  21. 21.
    Wessel MM, Nair N, Aaker GD, Ehrlich JR, D’Amico DJ, Kiss S (2012) Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br J Ophthalmol 96(5):694–698.  https://doi.org/10.1136/bjophthalmol-2011-300774 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Silva PS, Cavallerano JD, Haddad NM et al (2015) Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology 122(5):949–956.  https://doi.org/10.1016/j.ophtha.2015.01.008 CrossRefPubMedGoogle Scholar
  23. 23.
    Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM (2013) Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol 155(6):1038–1044.  https://doi.org/10.1016/j.ajo.2013.01.007 CrossRefPubMedGoogle Scholar
  24. 24.
    Fan W, Wang K, Ghasemi Falavarjani K et al (2017) Distribution of nonperfusion area on ultra-widefield fluorescein angiography in eyes with diabetic macular edema: DAVE study. Am J Ophthalmol 180:110–116.  https://doi.org/10.1016/j.ajo.2017.05.024 CrossRefPubMedGoogle Scholar
  25. 25.
    Oliver SC, Schwartz SD (2010) Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol 25(1–2):27–33.  https://doi.org/10.3109/08820538.2010.481239 CrossRefPubMedGoogle Scholar
  26. 26.
    Muqit MM, Marcellino GR, Henson DB et al (2013) Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol 91(3):251–258.  https://doi.org/10.1111/j.1755-3768.2011.02307.x CrossRefPubMedGoogle Scholar
  27. 27.
    Baker CW, Jiang Y, Stone T (2016) Recent advancements in diabetic retinopathy treatment from the Diabetic Retinopathy Clinical Research Network. Curr Opin Ophthalmol 27(3):210–216.  https://doi.org/10.1097/ICU.0000000000000262 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aiello LP, Odia I, Glassman AR et al (2019) Comparison of Early Treatment Diabetic Retinopathy Study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol 137(1):65–73.  https://doi.org/10.1001/jamaophthalmol.2018.4982 CrossRefPubMedGoogle Scholar
  29. 29.
    Pfau M, Goerdt L, Schmitz-Valckenberg S et al (2017) Green-light autofluorescence versus combined blue-light autofluorescence and near-infrared reflectance imaging in geographic atrophy secondary to age-related macular degeneration. Investig Ophthalmol Vis Sci 58(6):BIO121–BIO130.  https://doi.org/10.1167/iovs.17-21764 CrossRefGoogle Scholar
  30. 30.
    Sepah YJ, Akhtar A, Sadiq MA et al (2014) Fundus autofluorescence imaging: fundamentals and clinical relevance. Saudi J Ophthalmol 28(2):111–116.  https://doi.org/10.1016/j.sjopt.2014.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pichi F, Abboud EB, Ghazi NG, Khan AO (2018) Fundus autofluorescence imaging in hereditary retinal diseases. Acta Ophthalmol 96(5):e549–e561.  https://doi.org/10.1111/aos.13602 CrossRefPubMedGoogle Scholar
  32. 32.
    Pece A, Isola V, Holz F, Milani P, Brancato R (2010) Autofluorescence imaging of cystoid macular edema in diabetic retinopathy. Ophthalmologica 224(4):230–235.  https://doi.org/10.1159/000260229 CrossRefPubMedGoogle Scholar
  33. 33.
    Ebrahimiadib N, Riazi-Esfahani M (2012) Autofluorescence imaging for diagnosis and follow-up of cystoid macular edema. J Ophthalmic Vis Res 7(3):261–267PubMedPubMedCentralGoogle Scholar
  34. 34.
    Midena E, Bini S (2016) Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology. Graefes Arch Clin Exp Ophthalmol 254(9):1661–1668.  https://doi.org/10.1007/s00417-016-3361-7 CrossRefPubMedGoogle Scholar
  35. 35.
    Vujosevic S, Casciano M, Pilotto E, Boccassini B, Varano M, Midena E (2011) Diabetic macular edema: fundus autofluorescence and functional correlations. Investig Ophthalmol Vis Sci 52(1):442–448.  https://doi.org/10.1167/iovs.10-5588 CrossRefGoogle Scholar
  36. 36.
    Vujosevic S, Torresin T, Bini S et al (2017) Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 95(5):464–471.  https://doi.org/10.1111/aos.13294 CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshitake S, Murakami T, Horii T et al (2014) Qualitative and quantitative characteristics of near-infrared autofluorescence in diabetic macular edema. Ophthalmology 121(5):1036–1044.  https://doi.org/10.1016/j.ophtha.2013.11.033 CrossRefPubMedGoogle Scholar
  38. 38.
    Reznicek L, Dabov S, Haritoglou C, Kampik A, Kernt M, Neubauer AS (2013) Green-light fundus autofluorescence in diabetic macular edema. Int J Ophthalmol 6(1):75–80.  https://doi.org/10.3980/j.issn.2222-3959.2013.01.16 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tan AC, Fleckenstein M, Schmitz-Valckenberg S, Holz FG (2016) Clinical application of multicolor imaging technology. Ophthalmologica 236(1):8–18.  https://doi.org/10.1159/000446857 CrossRefPubMedGoogle Scholar
  40. 40.
    Ahmad MSZ, Carrim ZI (2017) Multicolor scanning laser imaging in diabetic retinopathy. Optom Vis Sci 94(11):1058–1061.  https://doi.org/10.1097/OPX.0000000000001128 CrossRefPubMedGoogle Scholar
  41. 41.
    Wanek J, Blair NP, Chau FY, Lim JI, Leiderman YI, Shahidi M (2016) Alterations in retinal layer thickness and reflectance at different stages of diabetic retinopathy by en face optical coherence tomography. Investig Ophthalmol Vis Sci 57(9):OCT341–OCT347.  https://doi.org/10.1167/iovs.15-18715 CrossRefGoogle Scholar
  42. 42.
    Cho YJ, Lee DH, Kim M (2018) Optical coherence tomography findings predictive of response to treatment in diabetic macular edema. J Int Med Res 46(11):4455–4464.  https://doi.org/10.1177/0300060518798503 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sala-Puigdollers A, Figueras-Roca M, Hereu M et al (2018) Repeatability and reproducibility of retinal and choroidal thickness measurements in Diabetic Macular Edema using Swept-source Optical Coherence Tomography. PLoS ONE 13(7):e0200819.  https://doi.org/10.1371/journal.pone.0200819 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schmidt-Erfurth U, Garcia-Arumi J, Bandello F et al (2017) Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica 237(4):185–222.  https://doi.org/10.1159/000458539 CrossRefPubMedGoogle Scholar
  45. 45.
    Parodi Battaglia M, Iacono P, Cascavilla M, Zucchiatti I, Bandello F (2018) A pathogenetic classification of diabetic macular edema. Ophthalmic Res 60(1):23–28.  https://doi.org/10.1159/000484350 CrossRefPubMedGoogle Scholar
  46. 46.
    Zur D, Iglicki M, Busch C et al (2018) OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology 125(2):267–275.  https://doi.org/10.1016/j.ophtha.2017.08.031 CrossRefPubMedGoogle Scholar
  47. 47.
    Vujosevic S, Berton M, Bini S, Casciano M, Cavarzeran F, Midena E (2016) Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina 36(7):1298–1308.  https://doi.org/10.1097/IAE.0000000000000912 CrossRefPubMedGoogle Scholar
  48. 48.
    Midena E, Pilotto E, Bini S (2018) Hyperreflective intraretinal foci as an OCT biomarker of retinal inflammation in diabetic macular edema. Investig Ophthalmol Vis Sci 59(13):5366.  https://doi.org/10.1167/iovs.18-25611 CrossRefGoogle Scholar
  49. 49.
    Yoon D, Rusu I, Barbazetto I (2014) Reduced effect of anti-vascular endothelial growth factor agents on diabetics with vitreomacular interface abnormalities. Int Ophthalmol 34(4):817–823.  https://doi.org/10.1007/s10792-013-9884-6 CrossRefPubMedGoogle Scholar
  50. 50.
    Gupta A, Raman R, Kulothungan V, Sharma T (2014) Association of systemic and ocular risk factors with neurosensory retinal detachment in diabetic macular edema: a case-control study. BMC Ophthalmol 14:47.  https://doi.org/10.1186/1471-2415-14-47 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Radwan SH, Soliman AZ, Tokarev J, Zhang L, van Kuijk FJ, Koozekanani DD (2015) Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema. JAMA Ophthalmol 133(7):820–825.  https://doi.org/10.1001/jamaophthalmol.2015.0972 CrossRefGoogle Scholar
  52. 52.
    Joltikov KA, Sesi CA, de Castro VM et al (2018) Disorganization of retinal inner layers (DRIL) and neuroretinal dysfunction in early diabetic retinopathy. Investig Ophthalmol Vis Sci 59(13):5481–5486.  https://doi.org/10.1167/iovs.18-24955 CrossRefGoogle Scholar
  53. 53.
    Sophie R, Lu N, Campochiaro PA (2015) Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab. Ophthalmology 122(7):1395–1401.  https://doi.org/10.1016/j.ophtha.2015.02.036 CrossRefPubMedGoogle Scholar
  54. 54.
    Sambhav K, Grover S, Chalam KV (2017) The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol 62(6):838–866.  https://doi.org/10.1016/j.survophthal.2017.05.006 CrossRefPubMedGoogle Scholar
  55. 55.
    Khadamy J, Abri Aghdam K, Falavarjani KG (2018) An update on optical coherence tomography angiography in diabetic retinopathy. J Ophthalmic Vis Res 13(4):487–497.  https://doi.org/10.4103/jovr.jovr_57_18 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ishibazawa A, Nagaoka T, Yokota H et al (2016) Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Investig Ophthalmol Vis Sci 57(14):6247–6255.  https://doi.org/10.1167/iovs.16-20210 CrossRefGoogle Scholar
  57. 57.
    Savastano MC, Federici M, Falsini B, Caporossi A, Minnella AM (2018) Detecting papillary neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Acta Ophthalmol 96(3):321–323.  https://doi.org/10.1111/aos.13166 CrossRefPubMedGoogle Scholar
  58. 58.
    Lee CS, Lee AY, Sim DA et al (2015) Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography. Am J Ophthalmol 159(1):101–110.  https://doi.org/10.1016/j.ajo.2014.09.041 CrossRefPubMedGoogle Scholar
  59. 59.
    Nesper PL, Roberts PK, Onishi AC et al (2017) Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Investig Ophthalmol Vis Sci 58(6):BIO307–BIO315.  https://doi.org/10.1167/iovs.17-21787 CrossRefGoogle Scholar
  60. 60.
    Miwa Y, Murakami T, Suzuma K et al (2016) Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography. Sci Rep 6:29064.  https://doi.org/10.1038/srep29064 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Couturier A, Mane V, Bonnin S et al (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 35(11):2384–2391.  https://doi.org/10.1097/IAE.0000000000000859 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Parravano M, De Geronimo D, Scarinci F et al (2017) Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol 179:90–96.  https://doi.org/10.1016/j.ajo.2017.04.021 CrossRefPubMedGoogle Scholar
  63. 63.
    Al-Sheikh M, Akil H, Pfau M, Sadda SR (2016) Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Investig Ophthalmol Vis Sci 57(8):3907–3913.  https://doi.org/10.1167/iovs.16-19570 CrossRefGoogle Scholar
  64. 64.
    Tarassoly K, Miraftabi A, Soltan Sanjari M, Parvaresh MM (2018) The relationship between foveal avascular zone area, vessel density, and cystoid changes in diabetic retinopathy: an optical coherence tomography angiography study. Retina 38(8):1613–1619.  https://doi.org/10.1097/IAE.0000000000001755 CrossRefPubMedGoogle Scholar
  65. 65.
    Garcia JM, Lima TT, Louzada RN, Rassi AT, Isaac DL, Avila M (2016) Diabetic macular ischemia diagnosis: comparison between optical coherence tomography angiography and fluorescein angiography. J Ophthalmol 2016:3989310.  https://doi.org/10.1155/2016/3989310 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138.  https://doi.org/10.1016/j.ajo.2016.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Thompson IA, Durrani AK, Patel S (2018) Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy. Eye (Lond).  https://doi.org/10.1038/s41433-018-0286-x CrossRefGoogle Scholar
  68. 68.
    Magrath GN, Say EAT, Sioufi K, Ferenczy S, Samara WA, Shields CL (2017) Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes. Retina 37(11):2102–2111.  https://doi.org/10.1097/IAE.0000000000001458 CrossRefGoogle Scholar
  69. 69.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35(11):2163–2180.  https://doi.org/10.1097/IAE.0000000000000765 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wong TY, Sun J, Kawasaki R et al (2018) Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 125(10):1608–1622.  https://doi.org/10.1016/j.ophtha.2018.04.007 CrossRefGoogle Scholar
  71. 71.
    Liu Y, Zupan NJ, Shiyanbola OO et al (2018) Factors influencing patient adherence with diabetic eye screening in rural communities: a qualitative study. PLoS ONE 13(11):e0206742.  https://doi.org/10.1371/journal.pone.0206742 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Chin EK, Ventura BV, See KY, Seibles J, Park SS (2014) Nonmydriatic fundus photography for teleophthalmology diabetic retinopathy screening in rural and urban clinics. Telemed J E Health 20(2):102–108.  https://doi.org/10.1089/tmj.2013.0042 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    DeTore J, Rizzolo D (2018) Telemedicine and diabetic retinopathy. JAAPA 31(9):1–5.  https://doi.org/10.1097/01.JAA.0000544310.25116.97 CrossRefPubMedGoogle Scholar
  74. 74.
    Wilson C, Horton M, Cavallerano J, Aiello LM (2005) Addition of primary care-based retinal imaging technology to an existing eye care professional referral program increased the rate of surveillance and treatment of diabetic retinopathy. Diabetes Care 28(2):318–322CrossRefGoogle Scholar
  75. 75.
    Shi L, Wu H, Dong J, Jiang K, Lu X, Shi J (2015) Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis. Br J Ophthalmol 99(6):823–831.  https://doi.org/10.1136/bjophthalmol-2014-305631 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rachapelle S, Legood R, Alavi Y et al (2013) The cost-utility of telemedicine to screen for diabetic retinopathy in India. Ophthalmology 120(3):566–573.  https://doi.org/10.1016/j.ophtha.2012.09.002 CrossRefPubMedGoogle Scholar
  77. 77.
    Lee JY, Lee SWH (2018) Telemedicine cost-effectiveness for diabetes management: a systematic review. Diabetes Technol Ther 20(7):492–500.  https://doi.org/10.1089/dia.2018.0098 CrossRefPubMedGoogle Scholar
  78. 78.
    Nathoo N, Ng M, Rudnisky CJ, Tennant MT (2010) The prevalence of diabetic retinopathy as identified by teleophthalmology in rural Alberta. Can J Ophthalmol 45(1):28–32.  https://doi.org/10.3129/i09-220 CrossRefPubMedGoogle Scholar
  79. 79.
    Boucher MC, Nguyen QT, Angioi K (2005) Mass community screening for diabetic retinopathy using a nonmydriatic camera with telemedicine. Can J Ophthalmol 40(6):734–742.  https://doi.org/10.1016/S0008-4182(05)80091-2 CrossRefPubMedGoogle Scholar
  80. 80.
    Bursell SE, Fonda SJ, Lewis DG, Horton MB (2018) Prevalence of diabetic retinopathy and diabetic macular edema in a primary care-based teleophthalmology program for American Indians and Alaskan Natives. PLoS ONE 13(6):e0198551.  https://doi.org/10.1371/journal.pone.0198551 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Andonegui J, Serrano L, Eguzkiza A et al (2010) Diabetic retinopathy screening using tele-ophthalmology in a primary care setting. J Telemed Telecare 16(8):429–432.  https://doi.org/10.1258/jtt.2010.091204 CrossRefPubMedGoogle Scholar
  82. 82.
    Scanlon PH (2017) The english national screening programme for diabetic retinopathy 2003–2016. Acta Diabetol 54(6):515–525.  https://doi.org/10.1007/s00592-017-0974-1 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Liew G, Michaelides M, Bunce C (2014) A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 4(2):e004015.  https://doi.org/10.1136/bmjopen-2013-004015 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kim J, Driver DD (2015) Teleophthalmology for first nations clients at risk of diabetic retinopathy: a mixed methods evaluation. JMIR Med Inform 3(1):e10.  https://doi.org/10.2196/medinform.3872 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Salongcay RP, Silva PS (2018) The role of teleophthalmology in the management of diabetic retinopathy. Asia Pac J Ophthalmol (Phila) 7(1):17–21.  https://doi.org/10.22608/APO.2017479 CrossRefGoogle Scholar
  86. 86.
    Fenner BJ, Wong RLM, Lam WC, Tan GSW, Cheung GCM (2018) Advances in retinal imaging and applications in diabetic retinopathy screening: a review. Ophthalmol Ther 7(2):333–346.  https://doi.org/10.1007/s40123-018-0153-7 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410.  https://doi.org/10.1001/jama.2016.17216 CrossRefPubMedGoogle Scholar
  88. 88.
    Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969.  https://doi.org/10.1016/j.ophtha.2017.02.008 CrossRefPubMedGoogle Scholar
  89. 89.
    Ting DSW, Cheung CY, Lim G et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223.  https://doi.org/10.1001/jama.2017.18152 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Krause J, Gulshan V, Rahimy E et al (2018) Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8):1264–1272.  https://doi.org/10.1016/j.ophtha.2018.01.034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  • Maria Vittoria Cicinelli
    • 1
  • Michele Cavalleri
    • 1
  • Maria Brambati
    • 1
  • Rosangela Lattanzio
    • 1
  • Francesco Bandello
    • 1
    Email author
  1. 1.Department of Ophthalmology, Scientific Institute Ospedale San RaffaeleUniversity Vita-SaluteMilanItaly

Personalised recommendations