Advertisement

Acta Diabetologica

, Volume 55, Issue 9, pp 927–934 | Cite as

Choroidal thickness changes in non-treated eyes of patients with diabetes: swept-source optical coherence tomography study

  • Hajnalka Horváth
  • Illés Kovács
  • Gábor László Sándor
  • Cecília Czakó
  • Klaudia Mallár
  • Zsuzsanna Récsán
  • Anikó Somogyi
  • Zoltán Zsolt Nagy
  • Mónika Ecsedy
Original Article
  • 76 Downloads

Abstract

Aims

To measure choroidal thickness (CT) in diabetic eyes and its correlation with metabolic status and the severity of diabetic retinopathy (DR).

Materials and methods

Prospective cross-sectional study using swept-source optical coherence tomography. CT maps of 96 treatment naïve eyes of 48 patients with diabetes were compared to 46 eyes of 23 healthy controls. CT changes and their relation to diabetes, age, gender, disease duration, hypertension (HT), hemoglobin A1c level, type and severity of DR were evaluated.

Results

A significantly thinner choroid was measured in patients with diabetes compared to controls (p < 0.009). In the diabetic group age, gender, disease duration and HT were significantly correlated with CT in univariable regression models (p < 0.05). In multivariable analysis, the duration of diabetes significantly negatively correlated with CT (p = 0.02). According to analysis of variance, there was a significant difference among means of CT in different stages of DR (p = 0.002), with thinner CT in cases with more advanced DR. In a multivariable predictive model, thinner CT was associated with an increased risk for the presence of DR (p = 0.02).

Conclusions

Diabetes mellitus itself and the severity of DR affect CT significantly, even after adjusting for the effects of confounding systemic factors. Disease duration seems to be associated with a reduction of choroidal thickness. Decreased CT proved to be correlated with the severity of DR.

Keywords

Choroidal thickness Diabetic retinopathy Diabetic choroidopathy Swept-source optical coherence tomography 

Notes

Compliance with ethical standards

Statement of human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Statement of informed consent

Written informed consent was obtained before the examination from each patient, as well as the approval from our institutional ethics committee.

Conflict of interest

None of the authors have any financial/conflicting interests to disclose.

References

  1. 1.
    Tóth G, Szabó D, Sándor GL et al (2017) Diabetes and diabetic retinopathy in people aged 50 years and older in Hungary. Br J Ophthalmol 101:965–969CrossRefPubMedGoogle Scholar
  2. 2.
    Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239CrossRefPubMedGoogle Scholar
  3. 3.
    Antonetti DA, Lieth E, Barber AJ, Gardner TW (1999) Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin Ophthalmol 14:240–248CrossRefPubMedGoogle Scholar
  4. 4.
    Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168CrossRefPubMedGoogle Scholar
  5. 5.
    Cao J, McLeod S, Merges CA, Lutty GA (1998) Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol 116:589–597CrossRefPubMedGoogle Scholar
  6. 6.
    Shiragami C, Shiraga F, Matsuo T, Tsuchida Y, Ohtsuki H (2002) Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 240:436–442CrossRefPubMedGoogle Scholar
  7. 7.
    Freeman WR, Bartsch DU, Mueller AJ, Banker AS, Weinreb RN (1998) Simultaneous indocyanine green and fluorescein angiography using a confocal scanning laser ophthalmoscope. Arch Ophthalmol 116:455–463CrossRefPubMedGoogle Scholar
  8. 8.
    Laviers H, Zambarakji H (2014) Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol 252:1871–1883CrossRefPubMedGoogle Scholar
  9. 9.
    Ruiz-Medrano J, Flores-Moreno I, Pena-Garcia P, Montero JA, Duker JS, Ruiz-Moreno JM (2014) Macular choroidal thickness profile in a healthy population measured by swept-source optical coherence tomography. Investig Ophthalmol Vis Sci 55:3532–3542CrossRefGoogle Scholar
  10. 10.
    Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338CrossRefPubMedGoogle Scholar
  11. 11.
    Zafar S, Siddiqui MA, Shahzad R (2016) Comparison of choroidal thickness measurements between spectral-domain OCT and swept-source OCT in normal and diseased eyes. Clin Ophthalmol 14:10:2271–2276CrossRefGoogle Scholar
  12. 12.
    Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Investig Ophthalmol Vis Sci 54:3378–3384CrossRefGoogle Scholar
  13. 13.
    Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina 32:563–568CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Investig Ophthalmol Vis Sci 53:6017–6024CrossRefGoogle Scholar
  15. 15.
    Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E (2012) Macular and peripapillary choroidal thickness in diabetic patients. Retina 32:1781–1790CrossRefPubMedGoogle Scholar
  16. 16.
    Esmaeelpour M, Povazay B, Hermann B et al (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Investig Ophthalmol Vis Sci 52:5311–5316CrossRefGoogle Scholar
  17. 17.
    Campos A, Campos EJ, Martins J, Ambrósio AF, Silva R (2017) Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmol 95:446–459CrossRefPubMedGoogle Scholar
  18. 18.
    Melancia D, Vicente A, Cunha JP, Abegão Pinto L, Ferreira J (2016) Diabetic choroidopathy: a review of the current literature. Graefes Arch Clin Exp Ophthalmol 254:1453–1461CrossRefPubMedGoogle Scholar
  19. 19.
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20:1183CrossRefGoogle Scholar
  20. 20.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology 98:786–806CrossRefGoogle Scholar
  21. 21.
    Otani T, Kishi S, Maruyama Y (1999) Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 127:688–693CrossRefPubMedGoogle Scholar
  22. 22.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Ophthalmology 98:807–822CrossRefGoogle Scholar
  23. 23.
    Shin YU, Lee MJ, Lee BR (2015) Choroidal maps in different types of macular edema in branch retinal vein occlusion using swept-source optical coherence tomography. Am J Ophthalmol 160:328–334CrossRefPubMedGoogle Scholar
  24. 24.
    Min JK, Lee S, Kim JS, Woo JM, Yang HS (2017) Effects of diabetic macular edema on repeatability of retinal nerve fiber layer thickness measurements at the macular and peripapillary area using swept-source optical coherence tomography. Curr Eye Res 42:307–314CrossRefPubMedGoogle Scholar
  25. 25.
    Wang J, Gao X, Huang W et al (2015) Swept-source optical coherence tomography imaging of macular retinal and choroidal structures in healthy eyes. BMC Ophthalmol 15:122CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Han YS, Lim HB, Lee SH, Kim JY (2015) Diurnal variation in choroidal and retinal thickness of the early treatment of diabetic retinopathy study macular subfields determined using swept-source optical coherence tomography. Ophthalmologica 233:192–197CrossRefPubMedGoogle Scholar
  27. 27.
    Bafiq R, Mathew R, Pearce E et al (2015) Age, sex, and ethnic variations in inner and outer retinal and choroidal thickness on spectral-domain optical coherence tomography. Am J Ophthalmol 160:1034–1043CrossRefPubMedGoogle Scholar
  28. 28.
    Akay F, Gundogan FC, Yolcu U, Toyran S, Uzun S (2016) Choroidal thickness in systemic arterial hypertension. Eur J Ophthalmol 26:152–157CrossRefPubMedGoogle Scholar
  29. 29.
    Abadia B, Suñen I, Calvo P, Bartol F, Verdes G, Ferreras A (2018) Choroidal thickness measured using swept-source optical coherence tomography is reduced in patients with type 2 diabetes. PLoS One 13(2):e0191977CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ünsal E, Eltutar K, Zirtiloğlu S, Dinçer N, Ozdoğan Erkul S, Güngel H (2014) Choroidal thickness in patients with diabetic retinopathy. Clin Ophthalmol 8:637–642CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Giuffrè G, Lodato G, Dardanoni G (2004) Prevalence and risk factors of diabetic retinopathy in adult and elderly subjects: the Casteldaccia Eye Study. Graefe’s Arch Clin Exp Ophthalmol 242:535–540CrossRefGoogle Scholar
  32. 32.
    Lee HK, Lim JW, Shin MC (2013) Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol 27:433–439CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Laíns I, Talcott KE, Santos AR et al (2018) Choroidal thickness in diabetic retinopathy assessed with Swept-Source optical coherence tomography. Retina 38:173–182CrossRefPubMedGoogle Scholar
  34. 34.
    de Freytas A, Gallego Pinazo R, Cisneros Lanuza Á (2016) Subfoveal choroidal thickness in eyes with diabetic macular oedema using swept source optical coherence tomography. Arch Soc Esp Oftalmol 91:228–231CrossRefPubMedGoogle Scholar
  35. 35.
    Tan CS, Cheong KX, Lim LW, Sadda SR (2016) Comparison of macular choroidal thicknesses from swept source and spectral domain optical coherence tomography. Br J Ophthalmol 100:995–999CrossRefPubMedGoogle Scholar
  36. 36.
    Matsuo Y, Sakamoto T, Yamashita T, Tomita M, Shirasawa M, Terasaki H (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Investig Ophthalmol Vis Sci 54:7630–7636CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Meng X, Wu Z, Zou W, Zhang J, Zhu D (2015) Changes in choroidal thickness after panretinal photocoagulation for diabetic retinopathy: a 12-week longitudinal study. Investig Ophthalmol Vis Sci 56:2631–2638CrossRefGoogle Scholar
  38. 38.
    Laíns I, Figueira J, Santos AR et al (2014) Choroidal thickness in diabetic retinopathy: the influence of antiangiogenic therapy. Retina 34:1199–1207CrossRefPubMedGoogle Scholar
  39. 39.
    Schocket LS, Brucker AJ, Niknam RM, Grunwald JE, DuPont J, Brucker AJ (2004) Foveolar choroidal hemodynamics in proliferative diabetic retinopathy. Int Ophthalmol 25:89–94CrossRefPubMedGoogle Scholar
  40. 40.
    Lutty GA, McLeod DS (2005) Phosphatase enzyme histochemistry for studying vascular hierarchy, pathology, and endothelial cell dysfunction in retina and choroid. Vis Res 45:3504–3511CrossRefPubMedGoogle Scholar
  41. 41.
    Lutty GA (2017) Diabetic choroidopathy. Vis Res 139:161–167CrossRefPubMedGoogle Scholar
  42. 42.
    Nagaoka T, Kitaya N, Sugawara R et al (2004) Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 88:1060–1063CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Murakami T, Uji A, Suzuma K et al (2016) In vivo choroidal vascular lesions in diabetes on swept-source optical coherence tomography. PLoS One 11(8):e0160317CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Agemy SA, Scripsema NK, Shah CM et al (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35:2353–2363CrossRefPubMedGoogle Scholar
  45. 45.
    Abbey AM, Kuriyan AE, Modi YS et al (2015) Optical coherence tomography measurements of choroidal thickness in healthy eyes: correlation with age and axial length. Ophthalmic Surg Lasers Imaging Retina 46:18–24CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Hajnalka Horváth
    • 1
  • Illés Kovács
    • 1
  • Gábor László Sándor
    • 1
  • Cecília Czakó
    • 1
  • Klaudia Mallár
    • 1
  • Zsuzsanna Récsán
    • 1
  • Anikó Somogyi
    • 2
  • Zoltán Zsolt Nagy
    • 1
  • Mónika Ecsedy
    • 1
  1. 1.Department of OphthalmologySemmelweis UniversityBudapestHungary
  2. 2.2nd Department of Internal MedicineSemmelweis UniversityBudapestHungary

Personalised recommendations