Advertisement

Acta Diabetologica

, Volume 54, Issue 3, pp 257–264 | Cite as

Serum bilirubin concentrations and incident coronary heart disease risk among patients with type 2 diabetes: the Dongfeng–Tongji cohort

  • Jing Wang
  • Xiaofen Wu
  • Yaru Li
  • Xu Han
  • Hua Hu
  • Fei Wang
  • Caizheng Yu
  • Xiulou Li
  • Kun Yang
  • Jing Yuan
  • Ping Yao
  • Xiaoping Miao
  • Sheng Wei
  • Youjie Wang
  • Weihong Chen
  • Yuan Liang
  • Huan Guo
  • Handong Yang
  • Tangchun Wu
  • Xiaomin Zhang
  • Meian HeEmail author
Original Article

Abstract

Aims

Elevated serum bilirubin levels are associated with decreased coronary heart disease (CHD) risk in cross-sectional studies among diabetic patients, but prospective evidence is limited. We investigated the relationship of serum bilirubin levels with incident CHD risk among type 2 diabetes patients.

Methods

In a prospective study of 2918 type 2 diabetes embedded in the Dongfeng–Tongji cohort, serum total bilirubin (TBil), direct bilirubin (DBil), and indirect bilirubin (IBil) were measured at baseline. Cox proportional hazards models were used to examine the association between serum bilirubin levels and CHD risk.

Results

A total of 440 CHD cases were identified during 12,017 person-years of follow-up. Compared with extreme quartiles, the adjusted hazard ratio and 95% confidence interval of incident CHD were 0.74 (0.56–0.99) with P trend = 0.08 in IBil, while in TBil and DBil, the bilirubin–CHD associations were not significant. Moreover, serum TBil and IBil levels were interacted with drinking status on the risk of incident CHD (P interaction = 0.021 and 0.037, respectively), and the associations were evident in ever drinkers. In drinkers, when serum TBil or IBil concentrations increased 1 μmol/L, the CHD risk both decreased 6% (95% CIs 0.89–0.99 and 0.87–1.00, respectively).

Conclusions

Serum IBil levels were marginally related to decreased incident CHD risk among type 2 diabetes. Drinking could potentially enhance the associations of serum TBil and DBil levels with incident CHD risk.

Keywords

Bilirubin Cohort Type 2 diabetes Coronary heart disease Chinese 

Notes

Acknowledgements

The authors would like to thank all study participants for participating in the present DFTJ cohort study as well as all volunteers for assisting in collecting the samples and data.

Funding

This work was supported by the grant from the National Natural Science Foundation (Grant NSFC-81473051 and 81522040) and the Program for the New Century Excellent Talents in University (NCET-11-0169) for Meian He, the National Natural Science Foundation (Grant NSFC-81230069) for Tangchun Wu, the National Natural Science Foundation (Grant NSFC-71273083), and the Natural Science Foundation of Hubei Provincial Department of Education (D20162105) for Jing Wang.

Authors’ contributions

JW, MAH, XMZ, TCW, and HDY conceived and designed the study. JW, YRL, XFW, XH, HH, FW, and CZY analyzed the data and wrote the first draft of the paper. XFW, XLL, KY collected, cleaned and analyzed the data; JY, PY, XPM, XMZ, HG, YJW, WHC, SW, and YL supervised the field activities and designed the analytic strategy. All authors participated in critical revision and approved the final version of the manuscript. No potential conflicts of interest relevant to this article were reported.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical standard

The present study was approved by the Medical Ethics Committee of the School of Public Health, Tongji Medical College, and the Dongfeng General Hospital, the Dongfeng Motor Corporation. All participants provided written informed consents.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Supplementary material

592_2016_946_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)
592_2016_946_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)
592_2016_946_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)

References

  1. 1.
    van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B (2010) The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 17(Suppl 1):S3–S8. doi: 10.1097/01.hjr.0000368191.86614.5a CrossRefPubMedGoogle Scholar
  2. 2.
    Shah AD, Langenberg C, Rapsomaniki E et al (2015) Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 3(2):105–113. doi: 10.1016/S2213-8587(14)70219-0 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695. doi: 10.1056/NEJMra043430 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Back M, Hansson GK (2015) Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol 12(4):199–211. doi: 10.1038/nrcardio.2015.5 CrossRefPubMedGoogle Scholar
  6. 6.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi: 10.1016/j.biocel.2006.07.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA 84(16):5918–5922CrossRefGoogle Scholar
  8. 8.
    Wu TW, Fung KP, Wu J, Yang CC, Weisel RD (1996) Antioxidation of human low density lipoprotein by unconjugated and conjugated bilirubins. Biochem Pharmacol 51(6):859–862CrossRefGoogle Scholar
  9. 9.
    Dong H, Huang H, Yun X et al (2014) Bilirubin increases insulin sensitivity in leptin-receptor deficient and diet-induced obese mice through suppression of ER stress and chronic inflammation. Endocrinology 155(3):818–828. doi: 10.1210/en.2013-1667 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kawamura K, Ishikawa K, Wada Y et al (2005) Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler Thromb Vasc Biol 25(1):155–160. doi: 10.1161/01.ATV.0000148405.18071.6a CrossRefPubMedGoogle Scholar
  11. 11.
    Breimer LH, Wannamethee G, Ebrahim S, Shaper AG (1995) Serum bilirubin and risk of ischemic heart disease in middle-aged British men. Clin Chem 41(10):1504–1508PubMedGoogle Scholar
  12. 12.
    Troughton JA, Woodside JV, Young IS et al (2007) Bilirubin and coronary heart disease risk in the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Eur J Cardiovasc Prev Rehabil 14(1):79–84. doi: 10.1097/01.hjr.0000230097.81202.9f CrossRefPubMedGoogle Scholar
  13. 13.
    Lin JP, O’Donnell CJ, Schwaiger JP et al (2006) Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation 114(14):1476–1481. doi: 10.1161/circulationaha.106.633206 CrossRefPubMedGoogle Scholar
  14. 14.
    Song YS, Koo BK, Cho NH, Moon MK (2014) Effect of low serum total bilirubin levels (≤0.32 mg/dl) on risk of coronary artery disease in patients with metabolic syndrome. Am J Cardiol 114(11):1695–1700. doi: 10.1016/j.amjcard.2014.08.043 CrossRefPubMedGoogle Scholar
  15. 15.
    Bosma PJ, van der Meer IM, Bakker CT, Hofman A, Paul-Abrahamse M, Witteman JC (2003) UGT1A1*28 allele and coronary heart disease: the Rotterdam study. Clin Chem 49(7):1180–1181. doi: 10.1373/49.7.1180 CrossRefPubMedGoogle Scholar
  16. 16.
    Stender S, Frikke-Schmidt R, Nordestgaard BG, Grande P, Tybjaerg-Hansen A (2013) Genetically elevated bilirubin and risk of ischaemic heart disease: three Mendelian randomization studies and a meta-analysis. J Intern Med 273(1):59–68. doi: 10.1111/j.1365-2796.2012.02576.x CrossRefPubMedGoogle Scholar
  17. 17.
    Inoguchi T, Sasaki S, Kobayashi K, Takayanagi R, Yamada T (2007) Relationship between Gilbert syndrome and prevalence of vascular complications in patients with diabetes. JAMA 298(12):1398–1400. doi: 10.1001/jama.298.12.1398-b CrossRefPubMedGoogle Scholar
  18. 18.
    Fukui M, Tanaka M, Shiraishi E et al (2008) Relationship between serum bilirubin and albuminuria in patients with type 2 diabetes. Kidney Int 74(9):1197–1201. doi: 10.1038/ki.2008.398 CrossRefPubMedGoogle Scholar
  19. 19.
    Hwang HJ, Kim SH (2010) Inverse relationship between fasting direct bilirubin and metabolic syndrome in Korean adults. Clin Chim Acta 411(19–20):1496–1501. doi: 10.1016/j.cca.2010.06.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Pineda S, Bang OY, Saver JL et al (2008) Association of serum bilirubin with ischemic stroke outcomes. J Stroke Cerebrovasc Dis 17(3):147–152. doi: 10.1016/j.jstrokecerebrovasdis.2008.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang F, Zhu J, Yao P et al (2013) Cohort profile: the Dongfeng–Tongji cohort study of retired workers. Int J Epidemiol 42(3):731–740. doi: 10.1093/ije/dys053 CrossRefPubMedGoogle Scholar
  22. 22.
    Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7):539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539:AID-DIA668>3.0.CO;2-S CrossRefPubMedGoogle Scholar
  23. 23.
    Yang L, Yang H, He M et al (2016) Longer sleep duration and midday napping are associated with a higher risk of CHD incidence in middle-aged and older Chinese: the Dongfeng–Tongji Cohort Study. Sleep 39(3):645–652. doi: 10.5665/sleep.5544 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    World Health Organization (1979) Report of the joint international society and federation of cardiology/world health organization task force on standardization of clinical nomenclature: nomenclature and criteria for diagnosis of ischemic heart disease. Circulation 59:607–609CrossRefGoogle Scholar
  25. 25.
    Schwertner HA, Jackson WG, Tolan G (1994) Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin Chem 40(1):18–23PubMedGoogle Scholar
  26. 26.
    Oda E, Kawai R (2012) A possible cross-sectional association of serum total bilirubin with coronary heart disease and stroke in a Japanese health screening population. Heart Vessels 27(1):29–36. doi: 10.1007/s00380-011-0123-7 CrossRefPubMedGoogle Scholar
  27. 27.
    Kang SJ, Kim D, Park HE et al (2013) Elevated serum bilirubin levels are inversely associated with coronary artery atherosclerosis. Atherosclerosis 230(2):242–248. doi: 10.1016/j.atherosclerosis.2013.06.021 CrossRefPubMedGoogle Scholar
  28. 28.
    Yeh SY, Doupis J, Rahangdale S, Horr S, Malhotra A, Veves A (2009) Total serum bilirubin does not affect vascular reactivity in patients with diabetes. Vasc Med 14(2):129–136. doi: 10.1177/1358863x08098273 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fevery J (2008) Bilirubin in clinical practice: a review. Liver Int 28(5):592–605. doi: 10.1111/j.1478-3231.2008.01716.x CrossRefPubMedGoogle Scholar
  30. 30.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235(4792):1043–1046CrossRefGoogle Scholar
  31. 31.
    Neuzil J, Stocker R (1994) Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem 269(24):16712–16719PubMedGoogle Scholar
  32. 32.
    Dennery PA, McDonagh AF, Spitz DR, Rodgers PA, Stevenson DK (1995) Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia. Free Radic Biol Med 19(4):395–404CrossRefGoogle Scholar
  33. 33.
    Mazzone GL, Rigato I, Ostrow JD, Tiribelli C (2009) Bilirubin effect on endothelial adhesion molecules expression is mediated by the NF-kappaB signaling pathway. Biosci Trends 3(4):151–157PubMedGoogle Scholar
  34. 34.
    Liu J, Wang L, Tian XY et al (2015) Unconjugated bilirubin mediates heme oxygenase-1-induced vascular benefits in diabetic mice. Diabetes 64(5):1564–1575. doi: 10.2337/db14-1391 CrossRefPubMedGoogle Scholar
  35. 35.
    Blomster JI, Zoungas S, Chalmers J et al (2014) The relationship between alcohol consumption and vascular complications and mortality in individuals with type 2 diabetes mellitus. Diabetes Care. doi: 10.2337/dc13-2727 CrossRefPubMedGoogle Scholar
  36. 36.
    Gepner Y, Golan R, Harman-Boehm I et al (2015) Effects of initiating moderate alcohol intake on cardiometabolic risk in adults with type 2 diabetes: a 2-year randomized controlled trial. Ann Intern Med 163(8):569–579. doi: 10.7326/M14-1650 CrossRefPubMedGoogle Scholar
  37. 37.
    Association AD (2015) Cardiovascular disease and risk management. Sec. 8. In standards of medical care in diabetes—2015. Diabetes Care 38(Suppl):S49–S57. doi: 10.2337/dc15-S011 CrossRefGoogle Scholar
  38. 38.
    O’Malley SS, Gueorguieva R, Wu R, Jatlow PI (2015) Acute alcohol consumption elevates serum bilirubin: an endogenous antioxidant. Drug Alcohol Depend 149:87–92. doi: 10.1016/j.drugalcdep.2015.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dullaart RP, de Vries R, Lefrandt JD (2014) Increased large VLDL and small LDL particles are related to lower bilirubin in type 2 diabetes mellitus. Clin Biochem. doi: 10.1016/j.clinbiochem.2014.08.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Chung JO, Cho DH, Chung DJ, Chung MY (2015) The duration of diabetes is inversely associated with the physiological serum bilirubin levels in patients with type 2 diabetes. Intern Med 54(2):141–146. doi: 10.2169/internalmedicine.54.2858 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  • Jing Wang
    • 1
    • 2
  • Xiaofen Wu
    • 3
  • Yaru Li
    • 1
  • Xu Han
    • 1
  • Hua Hu
    • 1
  • Fei Wang
    • 1
  • Caizheng Yu
    • 1
  • Xiulou Li
    • 4
  • Kun Yang
    • 4
  • Jing Yuan
    • 1
  • Ping Yao
    • 1
  • Xiaoping Miao
    • 5
  • Sheng Wei
    • 5
  • Youjie Wang
    • 1
  • Weihong Chen
    • 1
  • Yuan Liang
    • 1
  • Huan Guo
    • 1
  • Handong Yang
    • 4
  • Tangchun Wu
    • 1
  • Xiaomin Zhang
    • 1
  • Meian He
    • 1
    Email author
  1. 1.Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Preventive Medicine, School of Public Health and ManagementHubei University of MedicineShiyanChina
  3. 3.Department of Gerontology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.Dongfeng Central HospitalDongfeng Motor Corporation and Hubei University of MedicineShiyanChina
  5. 5.Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations