Acta Diabetologica

, Volume 53, Issue 3, pp 359–366 | Cite as

The 1-h oral glucose tolerance test glucose and insulin values are associated with markers of clinical deterioration in cystic fibrosis

  • Adèle CoriatiEmail author
  • Sophie Ziai
  • Annick Lavoie
  • Yves Berthiaume
  • Rémi Rabasa-Lhoret
Original Article



Cystic fibrosis (CF) is associated with the emergence of CF-related diabetes (CFRD). CFRD is associated with increased risk of accelerated weight and/or lung function loss (clinical degradation). Data in the CF pediatric population reported an association between higher 60-min oral glucose tolerance test (OGTT) plasma glucose values and reduced lung function. Our objective was to evaluate the relationship between the 60-min OGTT insulin and glucose values and markers of clinical degradation in adult patients with CF.


This study was based on an ongoing observational cohort of CF adult patients (≥18 years). All patients underwent a 2-h OGTT with 30-min interval sample measurements. Plasma insulin and glucose levels were measured. Adult patients (N = 240) were categorized based on the 60-min OGTT median values of glucose (G60, 11.0 mmol/L) and/or insulin (I60, 43.4 μU/mL).


A negative association was observed between the 60-min OGTT glucose value and pulmonary function (FEV1; P = 0.001), whereas 60-min OGTT insulin values were positively associated with BMI (P = 0.004). Patients with high G60 values displayed lower FEV1 than patients with low G60 values (P = 0.025). Patients with higher I60 values demonstrated higher values of both FEV1 (P = 0.022) and BMI (P = 0.003) than patients with low I60 values. More importantly, when adjusting for BMI, the difference in FEV1 between both groups no longer existed (P = 0.166).


Both insulin and glucose values at 60-min OGTT are associated with indicators of clinical degradation in adult patients with CF. Future prospective analyses are essential in establishing the clinical utility of these indicators.


Cystic fibrosis-related diabetes Oral glucose tolerance test Insulin Glucose Pulmonary function Body mass index 



Cystic fibrosis


CF-related diabetes


Glycated hemoglobin


Oral glucose tolerance test


OGTT plasma glucose values at 60 and 120 min


OGTT plasma insulin values at 0, 60 and 120 min


Centre Hospitalier de l’Université de Montréal


Area under the curve


Indeterminate glucose tolerance



We thank the CF and diabetes clinic nurses for OGTT coordination.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding sources

This study is supported by the J-A DeSève chair for clinical research to RRL and by an operating team grant from the Canadian Cystic Fibrosis Foundation (No. 18608) to RRL and YB. AC holds the Michel Bélanger PhD scholarship from the Institut de Recherches Cliniques de Montréal (IRCM). RRL holds a scholarship from the Fonds de Recherche en Santé du Québec, and SZ has a doctoral Banting and Best scholarship from the Canadian Institutes of Health Research.

Ethical standard

All human studies have been reviewed and approved by the Research Ethics Committee of the CHUM.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.


  1. 1.
    Canada CF (2012) Canadian Cystic Fibrosis Registry. 2012 Annual Report.
  2. 2.
    Elborn JS (2013) Personalised medicine for cystic fibrosis: treating the basic defect. Eur Respir Rev 22(127):3–5. doi: 10.1183/09059180.00008112 CrossRefPubMedGoogle Scholar
  3. 3.
    Simmonds NJ, Cullinan P, Hodson ME (2009) Growing old with cystic fibrosis—the characteristics of long-term survivors of cystic fibrosis. Respir Med 103(4):629–635. doi: 10.1016/j.rmed.2008.10.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Moran A, Becker D, Casella SJ, Gottlieb PA, Kirkman MS, Marshall BC, Slovis B, Committee CCC (2010) Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: a technical review. Diabetes Care 33(12):2677–2683. doi: 10.2337/dc10-1279 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Costa M, Potvin S, Hammana I, Malet A, Berthiaume Y, Jeanneret A, Lavoie A, Levesque R, Perrier J, Poisson D, Karelis AD, Chiasson JL, Rabasa-Lhoret R (2007) Increased glucose excursion in cystic fibrosis and its association with a worse clinical status. J Cyst Fibros 6(6):376–383. doi: 10.1016/j.jcf.2007.02.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Burgess JC, Bridges N, Banya W, Gyi KM, Hodson ME, Bilton D, Simmonds NJ (2015) HbA1c as a screening tool for cystic fibrosis related diabetes. J Cyst Fibros. doi: 10.1016/j.jcf.2015.03.013 Google Scholar
  7. 7.
    Moran A, Brunzell C, Cohen RC, Katz M, Marshall BC, Onady G, Robinson KA, Sabadosa KA, Stecenko A, Slovis B, Committee CG (2010) Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care 33(12):2697–2708. doi: 10.2337/dc10-1768 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bianchi C, Miccoli R, Trombetta M, Giorgino F, Frontoni S, Faloia E, Marchesini G, Dolci MA, Cavalot F, Cavallo G, Leonetti F, Bonadonna RC, Del Prato S, Investigators G (2013) Elevated 1-h postload plasma glucose levels identify subjects with normal glucose tolerance but impaired beta-cell function, insulin resistance, and worse cardiovascular risk profile: the GENFIEV study. J Clin Endocrinol Metab 98(5):2100–2105. doi: 10.1210/jc.2012-3971 CrossRefPubMedGoogle Scholar
  9. 9.
    Manco M, Miraglia Del Giudice E, Spreghini MR, Cappa M, Perrone L, Brufani C, Rustico C, Morino G, Caprio S (2012) 1-Hour plasma glucose in obese youth. Acta Diabetol 49(6):435–443. doi: 10.1007/s00592-012-0384-3 CrossRefPubMedGoogle Scholar
  10. 10.
    CDACPGE (2013) Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes 37(suppl 1):S212Google Scholar
  11. 11.
    Brodsky J, Dougherty S, Makani R, Rubenstein RC, Kelly A (2011) Elevation of 1-hour plasma glucose during oral glucose tolerance testing is associated with worse pulmonary function in cystic fibrosis. Diabetes Care 34(2):292–295. doi: 10.2337/dc10-1604 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moran A, Pekow P, Grover P, Zorn M, Slovis B, Pilewski J, Tullis E, Liou TG, Allen H, Cystic Fibrosis Related Diabetes Therapy Study G (2009) Insulin therapy to improve BMI in cystic fibrosis-related diabetes without fasting hyperglycemia: results of the cystic fibrosis related diabetes therapy trial. Diabetes Care 32(10):1783–1788. doi: 10.2337/dc09-0585 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schmid K, Fink K, Holl RW, Hebestreit H, Ballmann M (2014) Predictors for future cystic fibrosis-related diabetes by oral glucose tolerance test. J Cyst Fibros 13(1):80–85. doi: 10.1016/j.jcf.2013.06.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Hammana I, Malet A, Costa M, Brochiero E, Berthiaume Y, Potvin S, Chiasson JL, Coderre L, Rabasa-Lhoret R (2007) Normal adiponectin levels despite abnormal glucose tolerance (or diabetes) and inflammation in adult patients with cystic fibrosis. Diabetes Metab 33(3):213–219. doi: 10.1016/j.diabet.2007.01.004 CrossRefPubMedGoogle Scholar
  15. 15.
    Stumvoll M, Van Haeften T, Fritsche A, Gerich J (2001) Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care 24(4):796–797CrossRefPubMedGoogle Scholar
  16. 16.
    Ziai S, Belson L, Hammana I, Berthiaume Y, Rabasa-Lhoret R (2011) Validation of insulin secretion indices in cystic fibrosis. J Cyst Fibros 10(2):145. doi: 10.1016/j.jcf.2010.11.004 CrossRefPubMedGoogle Scholar
  17. 17.
    Abdul-Ghani MA, Abdul-Ghani T, Ali N, Defronzo RA (2008) One-hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care 31(8):1650–1655. doi: 10.2337/dc08-0225 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bardini G, Dicembrini I, Cresci B, Rotella CM (2010) Inflammation markers and metabolic characteristics of subjects with 1-h plasma glucose levels. Diabetes Care 33(2):411–413. doi: 10.2337/dc09-1342 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, Hadden DR, McCance DR, Hod M, McIntyre HD, Oats JJ, Persson B, Rogers MS, Sacks DA (2008) Hyperglycemia and adverse pregnancy outcomes. N Eng J Med 358(19):1991–2002. doi: 10.1056/NEJMoa0707943 CrossRefGoogle Scholar
  20. 20.
    Kim JY, Goran MI, Toledo-Corral CM, Weigensberg MJ, Choi M, Shaibi GQ (2013) One-hour glucose during an oral glucose challenge prospectively predicts beta-cell deterioration and prediabetes in obese Hispanic youth. Diabetes Care 36(6):1681–1686CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hameed S, Morton JR, Jaffe A, Field PI, Belessis Y, Yoong T, Katz T, Verge CF (2010) Early glucose abnormalities in cystic fibrosis are preceded by poor weight gain. Diabetes Care 33(2):221–226. doi: 10.2337/dc09-1492 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brennan AL, Gyi KM, Wood DM, Johnson J, Holliman R, Baines DL, Philips BJ, Geddes DM, Hodson ME, Baker EH (2007) Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosis. J Cyst Fibros 6(2):101–109. doi: 10.1016/j.jcf.2006.03.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Ntimbane T, Krishnamoorthy P, Huot C, Legault L, Jacob SV, Brunet S, Levy E, Gueraud F, Lands LC, Comte B (2008) Oxidative stress and cystic fibrosis-related diabetes: a pilot study in children. J Cyst Fibros 7(5):373–384. doi: 10.1016/j.jcf.2008.01.004 CrossRefPubMedGoogle Scholar
  24. 24.
    Milla CE, Billings J, Moran A (2005) Diabetes is associated with dramatically decreased survival in female but not male subjects with cystic fibrosis. Diabetes Care 28(9):2141–2144CrossRefPubMedGoogle Scholar
  25. 25.
    Rafii M, Chapman K, Stewart C, Kelly E, Hanna A, Wilson DC, Tullis E, Pencharz PB (2005) Changes in response to insulin and the effects of varying glucose tolerance on whole-body protein metabolism in patients with cystic fibrosis. Am J Clin Nutr 81(2):421–426PubMedGoogle Scholar
  26. 26.
    Hammana I, Potvin S, Tardif A, Berthiaume Y, Coderre L, Rabasa-Lhoret R (2009) Validation of insulin secretion indices in cystic fibrosis patients. J Cyst Fibros 8(6):378–381. doi: 10.1016/j.jcf.2009.08.007 CrossRefPubMedGoogle Scholar
  27. 27.
    Monnier L, Hanefeld M, Schnell O, Colette C, Owens D (2013) Insulin and atherosclerosis: How are they related? Diabetes Metab 39(2):111–117. doi: 10.1016/j.diabet.2013.02.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Coriati A, Belson L, Ziai S, Haberer E, Gauthier MS, Mailhot G, Coderre L, Berthiaume Y, Rabasa-Lhoret R (2014) Impact of sex on insulin secretion in cystic fibrosis. J Clin Endocrinol Metab 99(5):1767–1773. doi: 10.1210/jc.2013-2756 CrossRefPubMedGoogle Scholar
  29. 29.
    Coriati A, Elisha B, Virassamynaik S, Phaneuf M, Ziai S, Gauthier MS, Rabasa-Lhoret R (2013) Diagnosis of cystic fibrosis-related glucose abnormalities: can we shorten the standard oral glucose tolerance test? Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 38(12):1254–1259. doi: 10.1139/apnm-2013-0022 CrossRefPubMedGoogle Scholar
  30. 30.
    Coriati A, Ziai S, Azar M, Berthiaume Y, Rabasa-Lhoret R (2015) Characterization of patients with cystic fibrosis presenting an indeterminate glucose tolerance (INDET). J Cyst Fibros. doi: 10.1016/j.jcf.2015.03.001 PubMedGoogle Scholar
  31. 31.
    Mozzillo E, Raia V, Fattorusso V, Falco M, Sepe A, De Gregorio F, Nugnes R, Valerio G, Franzese A (2012) Glucose derangements in very young children with cystic fibrosis and pancreatic insufficiency. Diabetes Care 35(11):e78CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Franzese A, Mozzillo E, Fattorusso V, Raia V, Valerio G (2015) Screening of glucose metabolism derangements in pediatric cystic fibrosis patients: how, when, why. Acta Diabetol 52:633–638. doi: 10.1007/s00592-015-0743-y CrossRefPubMedGoogle Scholar
  33. 33.
    Mozzillo E, Franzese A, Valerio G, Sepe A, De Simone I, Mazzarella G, Ferri P, Raia V (2009) One-year glargine treatment can improve the course of lung disease in children and adolescents with cystic fibrosis and early glucose derangements. Pediatric Diabetes 10(3):162–167CrossRefPubMedGoogle Scholar
  34. 34.
    Barrio R (2015) Management of endocrine disease: cystic fibrosis-related diabetes: novel pathogenic insights opening new therapeutic avenues. Eur J Endocrinol 172(4):R131–R141. doi: 10.1530/EJE-14-0644 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Adèle Coriati
    • 1
    • 2
    Email author
  • Sophie Ziai
    • 1
    • 2
  • Annick Lavoie
    • 3
  • Yves Berthiaume
    • 1
    • 3
    • 4
  • Rémi Rabasa-Lhoret
    • 1
    • 2
    • 3
    • 4
  1. 1.Institut de recherches cliniques de MontréalMontréalCanada
  2. 2.Department of NutritionUniversité de MontréalMontréalCanada
  3. 3.Cystic Fibrosis Clinic of the Centre hospitalier de l’Université de MontréalMontréalCanada
  4. 4.Department of MedicineUniversité de MontréalMontréalCanada

Personalised recommendations