Acta Diabetologica

, Volume 52, Issue 6, pp 1063–1075 | Cite as

Effects of long-term resveratrol-induced SIRT1 activation on insulin and apoptotic signalling in aged skeletal muscle

  • Thomas K. Sin
  • Angus P. Yu
  • Benjamin Y. Yung
  • Shea P. Yip
  • Lawrence W. Chan
  • Cesar S. Wong
  • John A. Rudd
  • Parco M. Siu
Original Article

Abstract

Aims

Activation of Foxo1 is known to promote apoptosis and disturbances to insulin signalling. However, their modulating roles in aged skeletal muscle are not clear. The present study tested the hypothesis that long-term (i.e. 8 month) resveratrol supplementation would improve physical traits including exercise capacity and basal voluntary activity of aged mice and modulate insulin/apoptotic signalling in aged skeletal muscle. This study also examined whether these resveratrol-associated alterations would involve orchestration of the SIRT1–Foxo1 signalling axis.

Methods

Two-month-old SAMP8 mice were randomly assigned to young, aged and aged with resveratrol treatment (AR) groups. The AR mice were supplemented with 4.9 mg−1 kg−1 day−1 resveratrol for 8 months. All animals were subject to endurance capacity test and voluntary motor behaviour assessment. The lateral gastrocnemius muscle tissues were harvested for further analyses.

Results

Long-term resveratrol treatment significantly alleviated the age-associated reductions in exercise capacity and voluntary motor behaviour. The protein content, but not the deacetylase activity of SIRT1 was increased with concomitant elevations of p300 acetylase and acetylation of Foxo1 in aged muscle. The aged muscle also manifested signs of impaired insulin signalling including attenuated phosphorylation of Akt, activity of pyruvate dehydrogenase and membrane trafficking of GLUT4 and elevated levels of phosphorylated IRS1 and iNOS and apoptotic activation measured as Bim, p53 and apoptotic DNA fragmentation. Intriguingly, all these age-related adverse changes were mitigated with the activation of SIRT1 deacetylase activity after long-term resveratrol treatment.

Conclusions

These data suggest that modulation of the SIRT1–Foxo1 axis by long-term resveratrol treatment enhances physical traits and alleviates the unfavourable changes in insulin and apoptotic signalling in aged muscle.

Keywords

Ageing Foxo1 Insulin Resveratrol SIRT1 Skeletal muscle 

References

  1. 1.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122. doi:10.1016/j.cell.2006.11.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Brasnyo P, Molnar GA, Mohas M, Marko L, Laczy B, Cseh J, Mikolas E, Szijarto IA, Merei A, Halmai R, Meszaros LG, Sumegi B, Wittmann I (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 106(3):383–389. doi:10.1017/S0007114511000316 CrossRefPubMedGoogle Scholar
  3. 3.
    Ghanim H, Sia CL, Abuaysheh S, Korzeniewski K, Patnaik P, Marumganti A, Chaudhuri A, Dandona P (2010) An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J Clin Endocrinol Metab 95(9):E1–E8. doi:10.1210/jc.2010-0482 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168. doi:10.1016/j.cmet.2008.06.011 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Kamei Y, Mizukami J, Miura S, Suzuki M, Takahashi N, Kawada T, Taniguchi T, Ezaki O (2003) A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett 536(1–3):232–236CrossRefPubMedGoogle Scholar
  6. 6.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868CrossRefPubMedGoogle Scholar
  7. 7.
    Senf SM, Sandesara PB, Reed SA, Judge AR (2011) p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 300(6):C1490–C1501. doi:10.1152/ajpcell.00255.2010 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Alamdari N, Aversa Z, Castillero E, Gurav A, Petkova V, Tizio S, Hasselgren PO (2012) Resveratrol prevents dexamethasone-induced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism. Biochem Biophys Res Commun 417(1):528–533. doi:10.1016/j.bbrc.2011.11.154 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Kim YI, Lee FN, Choi WS, Lee S, Youn JH (2006) Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes 55(8):2311–2317. doi:10.2337/db05-1606 CrossRefPubMedGoogle Scholar
  10. 10.
    Fukatsu Y, Noguchi T, Hosooka T, Ogura T, Kotani K, Abe T, Shibakusa T, Inoue K, Sakai M, Tobimatsu K, Inagaki K, Yoshioka T, Matsuo M, Nakae J, Matsuki Y, Hiramatsu R, Kaku K, Okamura H, Fushiki T, Kasuga M (2009) Muscle-specific overexpression of heparin-binding epidermal growth factor-like growth factor increases peripheral glucose disposal and insulin sensitivity. Endocrinology 150(6):2683–2691. doi:10.1210/en.2008-1647 CrossRefPubMedGoogle Scholar
  11. 11.
    Constantin-Teodosiu D, Constantin D, Stephens F, Laithwaite D, Greenhaff PL (2012) The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes. Diabetes 61(5):1017–1024. doi:10.2337/db11-0799 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cha HN, Kim YW, Kim JY, Kim YD, Song IH, Min KN, Park SY (2010) Lack of inducible nitric oxide synthase does not prevent aging-associated insulin resistance. Exp Gerontol 45(9):711–718. doi:10.1016/j.exger.2010.05.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Ropelle ER, Pauli JR, Cintra DE, da Silva AS, De Souza CT, Guadagnini D, Carvalho BM, Caricilli AM, Katashima CK, Carvalho-Filho MA, Hirabara S, Curi R, Velloso LA, Saad MJ, Carvalheira JB (2013) Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes 62(2):466–470. doi:10.2337/db12-0339 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Centeno-Baez C, Dallaire P, Marette A (2011) Resveratrol inhibition of inducible nitric oxide synthase in skeletal muscle involves AMPK but not SIRT1. Am J Physiol Endocrinol Metab 301(5):E922–E930. doi:10.1152/ajpendo.00530.2010 CrossRefPubMedGoogle Scholar
  15. 15.
    Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD, Wang TH (2012) Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem 23(12):1716–1724. doi:10.1016/j.jnutbio.2011.12.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264. doi:10.1371/journal.pone.0002264 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Matsumoto K, Ishihara K, Tanaka K, Inoue K, Fushiki T (1996) An adjustable-current swimming pool for the evaluation of endurance capacity of mice. J Appl Physiol (1985) 81(4):1843–1849Google Scholar
  18. 18.
    Sakakima H, Yoshida Y, Suzuki S, Morimoto N (2004) The effects of aging and treadmill running on soleus and gastrocnemius muscle morphology in the senescence-accelerated mouse (SAMP1). J Gerontol A Biol Sci Med Sci 59(10):1015–1021CrossRefPubMedGoogle Scholar
  19. 19.
    Sin TK, Pei XM, Teng BT, Tam EW, Yung BY, Siu PM (2013) Oxidative stress and DNA damage signalling in skeletal muscle in pressure-induced deep tissue injury. Pflugers Arch 465(2):295–317. doi:10.1007/s00424-012-1205-9 CrossRefPubMedGoogle Scholar
  20. 20.
    Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS, Ying M, Rudd JA, Siu PM (2014) Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol 592(Pt 12):2535–2548. doi:10.1113/jphysiol.2014.271387 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Li L, Pan R, Li R, Niemann B, Aurich AC, Chen Y, Rohrbach S (2011) Mitochondrial biogenesis and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes 60(1):157–167. doi:10.2337/db10-0331 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. doi:10.1038/nature01960 CrossRefPubMedGoogle Scholar
  23. 23.
    Dolinsky VW, Jones KE, Sidhu RS, Haykowsky M, Czubryt MP, Gordon T, Dyck JR (2012) Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. J Physiol 590(Pt 11):2783–2799. doi:10.1113/jphysiol.2012.230490 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Murase T, Haramizu S, Ota N, Hase T (2009) Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 10(4):423–434. doi:10.1007/s10522-008-9177-z CrossRefPubMedGoogle Scholar
  25. 25.
    Minakawa M, Kawano A, Miura Y, Yagasaki K (2011) Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic beta-cells. J Clin Biochem Nutr 48(3):237–244. doi:10.3164/jcbn.10-119 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Goh KP, Lee HY, Lau DP, Supaat W, Chan YH, Koh AF (2014) Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. Int J Sport Nutr Exerc Metab 24(1):2–13. doi:10.1123/ijsnem.2013-0045 CrossRefPubMedGoogle Scholar
  27. 27.
    Awad S, Constantin-Teodosiu D, Constantin D, Rowlands BJ, Fearon KC, Macdonald IA, Lobo DN (2010) Cellular mechanisms underlying the protective effects of preoperative feeding: a randomized study investigating muscle and liver glycogen content, mitochondrial function, gene and protein expression. Ann Surg 252(2):247–253. doi:10.1097/SLA.0b013e3181e8fbe6 CrossRefPubMedGoogle Scholar
  28. 28.
    Kim KW, Donato J Jr, Berglund ED, Choi YH, Kohno D, Elias CF, Depinho RA, Elmquist JK (2012) FOXO1 in the ventromedial hypothalamus regulates energy balance. J Clin Invest 122(7):2578–2589. doi:10.1172/JCI62848 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278(5):2896–2902. doi:10.1074/jbc.M208359200 CrossRefPubMedGoogle Scholar
  30. 30.
    Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM, Guo S (2013) Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38alpha MAPK during insulin resistance. Diabetes 62(11):3887–3900. doi:10.2337/db13-0095 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Frojdo S, Durand C, Molin L, Carey AL, El-Osta A, Kingwell BA, Febbraio MA, Solari F, Vidal H, Pirola L (2011) Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 335(2):166–176. doi:10.1016/j.mce.2011.01.008 CrossRefPubMedGoogle Scholar
  32. 32.
    Anhe GF, Okamoto MM, Kinote A, Sollon C, Lellis-Santos C, Anhe FF, Lima GA, Hirabara SM, Velloso LA, Bordin S, Machado UF (2012) Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes. Eur J Pharmacol 689(1–3):285–293. doi:10.1016/j.ejphar.2012.06.007 CrossRefPubMedGoogle Scholar
  33. 33.
    Huang JP, Huang SS, Deng JY, Chang CC, Day YJ, Hung LM (2010) Insulin and resveratrol act synergistically, preventing cardiac dysfunction in diabetes, but the advantage of resveratrol in diabetics with acute heart attack is antagonized by insulin. Free Radic Biol Med 49(11):1710–1721. doi:10.1016/j.freeradbiomed.2010.08.032 CrossRefPubMedGoogle Scholar
  34. 34.
    Dai X, Ding Y, Zhang Z, Cai X, Bao L, Li Y (2013) Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol Pharm Bull 36(5):788–795CrossRefPubMedGoogle Scholar
  35. 35.
    Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y, Chen W, Yu S, Yi D, Jin Z (2013) SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med 65:667–679. doi:10.1016/j.freeradbiomed.2013.07.007 CrossRefPubMedGoogle Scholar
  36. 36.
    Lee D, Goldberg AL (2013) SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 288(42):30515–30526. doi:10.1074/jbc.M113.489716 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Sinha-Hikim I, Sinha-Hikim AP, Parveen M, Shen R, Goswami R, Tran P, Crum A, Norris KC (2013) Long-term supplementation with a cystine-based antioxidant delays loss of muscle mass in aging. J Gerontol A Biol Sci Med Sci 68(7):749–759. doi:10.1093/gerona/gls334 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Joseph AM, Malamo AG, Silvestre J, Wawrzyniak N, Carey-Love S, Nguyen LM, Dutta D, Xu J, Leeuwenburgh C, Adhihetty PJ (2013) Short-term caloric restriction, resveratrol, or combined treatment regimens initiated in late-life alter mitochondrial protein expression profiles in a fiber-type specific manner in aged animals. Exp Gerontol 48(9):858–868. doi:10.1016/j.exger.2013.05.061 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Raffaelli F, Vignini A, Giulietti A, Alidori A, Borroni F, Sforza G, Faloia E, Mazzanti L, Nanetti L (2014) In vitro effects of resveratrol on oxidative stress in diabetic platelets. Acta Diabetol 51(1):61–69. doi:10.1007/s00592-013-0480-z CrossRefPubMedGoogle Scholar
  40. 40.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi:10.1038/nature05354 CrossRefPubMedGoogle Scholar
  41. 41.
    Higashida K, Kim SH, Jung SR, Asaka M, Holloszy JO, Han DH (2013) Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: a reevaluation. PLoS Biol 11(7):e1001603. doi:10.1371/journal.pbio.1001603 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Jackson JR, Ryan MJ, Alway SE (2011) Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J Gerontol A Biol Sci Med Sci 66(7):751–764. doi:10.1093/gerona/glr047 CrossRefPubMedGoogle Scholar
  43. 43.
    Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286(8):6049–6060. doi:10.1074/jbc.M110.176842 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942. doi:10.2337/db08-0349 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Hamdaoui N, Baudoin-Legros M, Kelly M, Aissat A, Moriceau S, Vieu DL, Colas J, Fritsch J, Edelman A, Planelles G (2011) Resveratrol rescues cAMP-dependent anionic transport in the cystic fibrosis pancreatic cell line CFPAC1. Br J Pharmacol 163(4):876–886. doi:10.1111/j.1476-5381.2011.01289.x PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Rouse M, Younes A, Egan JM (2014) Resveratrol and curcumin enhance pancreatic beta-cell function by inhibiting phosphodiesterase activity. J Endocrinol 223(2):107–117. doi:10.1530/JOE-14-0335 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433. doi:10.1016/j.cell.2012.01.017 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690. doi:10.1016/j.cmet.2012.04.003 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Thomas K. Sin
    • 1
  • Angus P. Yu
    • 1
  • Benjamin Y. Yung
    • 1
  • Shea P. Yip
    • 1
  • Lawrence W. Chan
    • 1
  • Cesar S. Wong
    • 1
  • John A. Rudd
    • 2
  • Parco M. Siu
    • 1
  1. 1.Department of Health Technology and Informatics, Faculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHung Hom, KowloonChina
  2. 2.School of Biomedical Science, Faculty of MedicineThe Chinese University of Hong KongSha Tin, New TerritoriesChina

Personalised recommendations