Acta Diabetologica

, Volume 52, Issue 4, pp 743–751 | Cite as

Analysis of a cardiovascular disease genetic risk score in the Diabetes Heart Study

  • Laura M. Raffield
  • Amanda J. Cox
  • J. Jeffrey Carr
  • Barry I. Freedman
  • Pamela J. Hicks
  • Carl D. Langefeld
  • Fang-Chi Hsu
  • Donald W. BowdenEmail author
Original Article



It remains unclear whether the high cardiovascular disease (CVD) burden in people with type 2 diabetes (T2D) is associated with genetic variants that contribute to CVD in general populations. Recent studies have examined genetic risk scores of single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies for their cumulative contribution to CVD-related traits. Most analyses combined SNPs associated with a single phenotypic class, e.g., lipids. In the present analysis, we examined a more comprehensive risk score comprised of SNPs associated with a broad range of CVD risk phenotypes.


The composite risk score was analyzed for potential associations with subclinical CVD, self-reported CVD events, and mortality in 983 T2D-affected individuals of European descent from 466 Diabetes Heart Study (DHS) families. Genetic association was examined using marginal models with generalized estimating equations for subclinical CVD and prior CVD events and Cox proportional hazards models with sandwich-based variance estimation for mortality; analyses were adjusted for age and sex.


An increase in genetic risk score was significantly associated with higher levels of coronary artery calcified plaque (p = 1.23 × 10−4); however, no significant associations with self-reported myocardial infarction and CVD events and all-cause and CVD mortality were observed.


These results suggest that a genetic risk score of SNPs associated with CVD events and risk factors does not significantly account for CVD risk in the DHS, highlighting the limitations of applying current genetic markers for CVD in individuals with diabetes.


Type 2 diabetes Mortality Coronary artery calcification Genetic risk score 



The authors thank the other investigators, the staff, and the participants of the DHS study for their valuable contributions. This study was supported by the National Institutes of Health through R01 HL67348 and R01 HL092301 (to DWB), R01 AR48797 (to JJC), and F31 AG044879 (to LMR).

Conflict of interest


Ethical standard

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national, Wake Forest School of Medicine Institutional Review Board) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Supplementary material

592_2015_720_MOESM1_ESM.pdf (364 kb)
Supplementary material 1 (PDF 363 kb)
592_2015_720_MOESM2_ESM.pdf (571 kb)
Supplementary material 2 (PDF 571 kb)
592_2015_720_MOESM3_ESM.pdf (30 kb)
Supplementary material 3 (PDF 30 kb)
592_2015_720_MOESM4_ESM.pdf (30 kb)
Supplementary material 4 (PDF 30 kb)


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS et al (2013) Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245. doi: 10.1161/CIR.0b013e31828124ad PubMedCrossRefGoogle Scholar
  2. 2.
    Shah S, Casas JP, Gaunt TR, Cooper J, Drenos F, Zabaneh D, Swerdlow DI, Shah T, Sofat R, Palmen J et al (2013) Influence of common genetic variation on blood lipid levels, cardiovascular risk, and coronary events in two British prospective cohort studies. Eur Heart J 34(13):972–981. doi: 10.1093/eurheartj/ehs243 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Voight B, Peloso G, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen M, Hindy G, Hólm H, Ding E, Johnson T et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841):572–580. doi: 10.1016/s0140-6736(12)60312-2 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ripatti S, Tikkanen E, Orho-Melander M, Havulinna A, Silander K, Sharma A, Guiducci C, Perola M, Jula A, Sinisalo J et al (2010) A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376(9750):1393–1400. doi: 10.1016/s0140-6736(10)61267-6 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Paynter N, Chasman D, Paré G, Buring J, Cook N, Miletich J, Ridker P (2010) Association between a literature-based genetic risk score and cardiovascular events in women. JAMA 303(7):631–637. doi: 10.1001/jama.2010.119 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Thanassoulis G, Peloso GM, Pencina MJ, Hoffmann U, Fox CS, Cupples LA, Levy D, D’Agostino RB, Hwang SJ, O’Donnell CJ (2012) A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham heart study. Circ Cardiovasc Genet 5(1):113–121. doi: 10.1161/circgenetics.111.961342 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    van Setten J, Isgum I, Smolonska J, Ripke S, de Jong PA, Oudkerk M, de Koning H, Lammers JW, Zanen P, Groen HJ et al (2013) Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis 228(2):400–405. doi: 10.1016/j.atherosclerosis.2013.02.039 PubMedCrossRefGoogle Scholar
  8. 8.
    Qi L, Parast L, Cai T, Powers C, Gervino EV, Hauser TH, Hu FB, Doria A (2011) Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol 58(25):2675–2682. doi: 10.1016/j.jacc.2011.08.054 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Farbstein D, Levy AP (2010) The genetics of vascular complications in diabetes mellitus. Cardiol Clin 28(3):477–496. doi: 10.1016/j.ccl.2010.04.005 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Qi Q, Workalemahu T, Zhang C, Hu FB, Qi L (2012) Genetic variants, plasma lipoprotein(a) levels, and risk of cardiovascular morbidity and mortality among two prospective cohorts of type 2 diabetes. Eur Heart J 33(3):325–334. doi: 10.1093/eurheartj/ehr350 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wang W, Peng W, Zhang X, Lu L, Zhang R, Zhang Q, Wang L, Chen Q, Shen W (2010) Chromosome 9p21.3 polymorphism in a Chinese Han population is associated with angiographic coronary plaque progression in non-diabetic but not in type 2 diabetic patients. Cardiovasc Diabetol 9:33. doi: 10.1186/1475-2840-9-33 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, di Pietro N, Sturma M, Novelli V, Mannino GC, Formoso G et al (2013) Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310(8):821–828. doi: 10.1001/jama.2013.276305 PubMedCrossRefGoogle Scholar
  13. 13.
    Doria A, Wojcik J, Xu R, Gervino EV, Hauser TH, Johnstone MT, Nolan D, Hu FB, Warram JH (2008) Interaction between poor glycemic control and 9p21 locus on risk of coronary artery disease in type 2 diabetes. JAMA 300(20):2389–2397. doi: 10.1001/jama.2008.649 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bacci S, Rizza S, Prudente S, Spoto B, Powers C, Facciorusso A, Pacilli A, Lauro D, Testa A, Zhang YY et al (2011) The ENPP1 Q121 variant predicts major cardiovascular events in high-risk individuals: evidence for interaction with obesity in diabetic patients. Diabetes 60(3):1000–1007. doi: 10.2337/db10-1300 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bowden D, Cox A, Freedman B, Hugenschimdt C, Wagenknecht L, Herrington D, Agarwal S, Register T, Maldjian J, Ng M et al (2010) Review of the Diabetes Heart Study (DHS) family of studies: a comprehensively examined sample for genetic and epidemiological studies of type 2 diabetes and its complications. Rev Diabet Stud RDS 7(3):188–201. doi: 10.1900/rds.2010.7.188 PubMedGoogle Scholar
  16. 16.
    Cox A, Hsu F-C, Ng M, Langefeld C, Freedman B, Carr J, Bowden D (2014) Genetic risk score associations with cardiovascular disease and mortality in the Diabetes Heart Study. Diabetes Care 37(4):1157–1164. doi: 10.2337/dc13-1514 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Adams JN, Raffield LM, Freedman BI, Langefeld CD, Ng MC, Carr JJ, Cox AJ, Bowden DW (2014) Analysis of common and coding variants with cardiovascular disease in the Diabetes Heart Study. Cardiovasc Diabetol 13:77. doi: 10.1186/1475-2840-13-77 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Raffield L, Cox A, Hsu F-C, Ng M, Langefeld C, Carr J, Freedman B, Bowden D (2013) Impact of HDL genetic risk scores on coronary artery calcified plaque and mortality in individuals with type 2 diabetes from the Diabetes Heart Study. Cardiovasc Diabetol 12:95. doi: 10.1186/1475-2840-12-95 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Carr JJ, Nelson JC, Wong ND, McNitt-Gray M, Arad Y, Jacobs DR Jr, Sidney S, Bild DE, Williams OD, Detrano RC (2005) Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of multi-ethnic study of atherosclerosis (MESA) and coronary artery risk development in young adults (CARDIA) study. Radiology 234(1):35–43. doi: 10.1148/radiol.2341040439 PubMedCrossRefGoogle Scholar
  21. 21.
    Carr JJ, Crouse JR 3rd, Goff DC Jr, D’Agostino RB Jr, Peterson NP, Burke GL (2000) Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. AJR Am J Roentgenol 174(4):915–921. doi: 10.2214/ajr.174.4.1740915 PubMedCrossRefGoogle Scholar
  22. 22.
    Howie B, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. doi: 10.1371/journal.pgen.1000529 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Cox A, Lehtinen A, Xu J, Langefeld C, Freedman B, Carr J, Bowden D (2013) Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol 50(3):391–399. doi: 10.1007/s00592-012-0440-z PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little DP, Strausberg R, Koester H, Cantor CR et al (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98(2):581–584. doi: 10.1073/pnas.021506298 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Fontaine-Bisson B, Renström F, Rolandsson O, Payne F, Hallmans G, Barroso I, Franks P (2010) Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population. Diabetologia 53(10):2155–2162. doi: 10.1007/s00125-010-1792-y PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211. doi: 10.1086/301844 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Folsom A, Kronmal R, Detrano R, O’Leary D, Bild D, Bluemke D, Budoff M, Liu K, Shea S, Szklo M et al (2008) Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med 168(12):1333–1339. doi: 10.1001/archinte.168.12.1333 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Detrano R, Guerci A, Carr J, Bild D, Burke G, Folsom A, Liu K, Shea S, Szklo M, Bluemke D et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. New Eng J Med 358(13):1336–1345. doi: 10.1056/NEJMoa072100 PubMedCrossRefGoogle Scholar
  29. 29.
    Agarwal S, Cox A, Herrington D, Jorgensen N, Xu J, Freedman B, Carr J, Bowden D (2013) Coronary calcium score predicts cardiovascular mortality in diabetes: Diabetes Heart Study. Diabetes Care 36(4):972–977. doi: 10.2337/dc12-1548 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Agarwal S, Morgan T, Herrington D, Xu J, Cox A, Freedman B, Carr J, Bowden D (2011) Coronary calcium score and prediction of all-cause mortality in diabetes: the Diabetes Heart Study. Diabetes Care 34(5):1219–1224. doi: 10.2337/dc11-0008 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Raggi P, Shaw LJ, Berman DS, Callister TQ (2004) Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 43(9):1663–1669. doi: 10.1016/j.jacc.2003.09.068 PubMedCrossRefGoogle Scholar
  32. 32.
    Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, Greenland P (2010) Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303(16):1610–1616. doi: 10.1001/jama.2010.461 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, Dragano N, Gronemeyer D, Seibel R, Kalsch H et al (2010) Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 56(17):1397–1406. doi: 10.1016/j.jacc.2010.06.030 PubMedCrossRefGoogle Scholar
  34. 34.
    Elias-Smale SE, Proenca RV, Koller MT, Kavousi M, van Rooij FJ, Hunink MG, Steyerberg EW, Hofman A, Oudkerk M, Witteman JC (2010) Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol 56(17):1407–1414. doi: 10.1016/j.jacc.2010.06.029 PubMedCrossRefGoogle Scholar
  35. 35.
    Hoff J, Quinn L, Sevrukov A, Lipton R, Daviglus M, Garside D, Ajmere N, Gandhi S, Kondos G (2003) The prevalence of coronary artery calcium among diabetic individuals without known coronary artery disease. J Am Coll Cardiol 41(6):1008–1012. doi: 10.1016/S0735-1097(02)02975-3 PubMedCrossRefGoogle Scholar
  36. 36.
    Coady SA, Sorlie PD, Cooper LS, Folsom AR, Rosamond WD, Conwill DE (2001) Validation of death certificate diagnosis for coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. J Clin Epidemiol 54(1):40–50. doi: 10.1016/S0895-4356(00)00272-9 PubMedCrossRefGoogle Scholar
  37. 37.
    Wexelman BA, Eden E, Rose KM (2013) Survey of New York City resident physicians on cause-of-death reporting, 2010. Prev Chronic Dis 10:E76. doi: 10.5888/pcd10.120288 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Manolio T, Collins F, Cox N, Goldstein D, Hindorff L, Hunter D, McCarthy M, Ramos E, Cardon L, Chakravarti A et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753. doi: 10.1038/nature08494 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, Engert JC, Clarke R, Davey-Smith G, Nordestgaard BG et al (2011) Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342:d548. doi: 10.1136/bmj.d548 PubMedCrossRefGoogle Scholar
  40. 40.
    Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283. doi: 10.1038/ng.2797 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Laura M. Raffield
    • 1
    • 2
    • 3
  • Amanda J. Cox
    • 2
    • 3
    • 4
  • J. Jeffrey Carr
    • 5
  • Barry I. Freedman
    • 6
  • Pamela J. Hicks
    • 2
    • 3
    • 4
  • Carl D. Langefeld
    • 7
  • Fang-Chi Hsu
    • 7
  • Donald W. Bowden
    • 2
    • 3
    • 4
    • 8
    Email author
  1. 1.Molecular Genetics and Genomics ProgramWake Forest School of MedicineWinston-SalemUSA
  2. 2.Center for Human GenomicsWake Forest School of MedicineWinston-SalemUSA
  3. 3.Center for Diabetes ResearchWake Forest School of MedicineWinston-SalemUSA
  4. 4.Department of BiochemistryWake Forest School of MedicineWinston-SalemUSA
  5. 5.Department of RadiologyVanderbilt University Medical CenterNashvilleUSA
  6. 6.Department of Internal Medicine - NephrologyWake Forest School of MedicineWinston-SalemUSA
  7. 7.Department of Biostatistical SciencesWake Forest School of MedicineWinston-SalemUSA
  8. 8.Center for Genomics and Personalized Medicine ResearchWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations