Acta Diabetologica

, Volume 52, Issue 4, pp 781–788 | Cite as

The product of triglycerides and glucose in comparison with fasting plasma glucose did not improve diabetes prediction

  • Mohsen Janghorbani
  • Siedeh Zinab Almasi
  • Masoud Amini
Original Article

Abstract

Aims

Previous study has reported that triglycerides-glucose (TyG) index, a product of triglycerides and fasting plasma glucose (FPG), might be useful in the prediction of incident type 2 diabetes (T2D). We evaluated the ability of the TyG index compared to FPG and OGTT as possible diabetes predictor in nondiabetic first-degree relatives (FDRs) of patients with T2D.

Methods

A total of 1,488 FDRs without diabetes of consecutive patients with T2D 30–70 years old (361 men and 1,127 women) were examined and followed for a mean (SD) of 6.9 (1.7) years for diabetes incidence. We examined the incidence of diabetes across quartiles of the TyG index and plotted a receiver operating characteristic (ROC) curve to assess discrimination. At baseline and through follow-up, participants underwent a standard 75-g two-hour oral glucose tolerance test.

Results

During 10,124 person-years of follow-up, 41 men and 154 women developed T2D. Those in the top quartile of TyG index were 3.4 times more likely to develop T2D than those in the bottom quartile (odds ratio 3.36; 95 % CI 1.83, 6.19). On ROC curve analysis, a higher area under the ROC was found for FPG (76.2; 95 % CI 71.9, 80.6), 1-hPG (81.0, 95 % CI 77.2, 84.9) and 2-hPG (76.5; 95 % CI 72.3, 80.8) than for TyG index (65.1; 95 % CI 60.5, 69.7).

Conclusions

TyG index is predicted T2D in high-risk individuals in Iran but FPG, 1-hPG and 2-hPG appeared to be more robust predictor of T2D in our study population.

Keywords

Diabetes mellitus First-degree relatives Glucose tolerance Incidence Risk score Triglycerides and glucose index Product of fasting triglycerides and glucose 

References

  1. 1.
    Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321PubMedCrossRefGoogle Scholar
  2. 2.
    Guariguata L (2012) By the numbers: new estimates from the IDF diabetes atlas update for 2012. Diabetes Res Clin Pract 98:524–525PubMedCrossRefGoogle Scholar
  3. 3.
    Shera S, Jawad F, Maqsood A (2007) Prevalence of diabetes in Pakistan. Diabetes Res Clin Pract 76:219–222PubMedCrossRefGoogle Scholar
  4. 4.
    Satman I, Yilmaz T, Sengul A, Salman S, Salman F, Uygur S et al (2002) Population-based study of diabetes and risk characteristics in Turkey: results of the Turkish diabetes epidemiology study (TURDEP). Diabetes Care 25:1551–1556PubMedCrossRefGoogle Scholar
  5. 5.
    Ashraf H, Rashidi A, Noshad S, Khalilzadeh O, Esteghamati A (2011) Epidemiology and risk factors of the cardiometabolic syndrome in the Middle East. Expert Rev Cardiovasc Ther 9:309–320PubMedCrossRefGoogle Scholar
  6. 6.
    Chodick G, Heymann AD, Shalev V, Kookia E (2003) The epidemiology of diabetes in a large Israeli HMO. Eur J Epidemiol 18:1143–1146PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Mahroos F, McKeigue PM (1998) High prevalence of diabetes in Bahrainis. Associations with ethnicity and raised plasma cholesterol. Diabetes Care 21:936–942PubMedCrossRefGoogle Scholar
  8. 8.
    Motlagh B, O’Donnell M, Yusuf S (2009) Prevalence of cardiovascular risk factors in the Middle East: a systematic review. Eur J Cardiovasc Prev Rehabil 16:268–280PubMedCrossRefGoogle Scholar
  9. 9.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350PubMedCrossRefGoogle Scholar
  10. 10.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Diabetes prevention program research group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403PubMedCrossRefGoogle Scholar
  11. 11.
    Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM et al (2012) Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ 345:e5900PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Buijsse B, Simmons RK, Griffin SJ, Schulze MB (2011) Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 33:46–62PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Noble D, Mathur R, Dent T, Meads C, Greenhalgh T (2011) Risk models and scores for type 2 diabetes: systematic review. BMJ 343:d7163Google Scholar
  14. 14.
    Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat T et al (2005) Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 353:1454–1462PubMedCrossRefGoogle Scholar
  15. 15.
    Rhee SY, Woo JT (2011) The prediabetic period: review of clinical aspects. Diabetes Metab J 35:107–116PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Janghorbani M, Amini M (2011) Normal fasting plasma glucose and risk of prediabetes and type 2 diabetes: the Isfahan Diabetes Prevention Study. Rev Diabet Stud 8:490PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F (2008) The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord 6:299–304PubMedCrossRefGoogle Scholar
  18. 18.
    Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernandez Gonzalez SO et al (2010) The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab 95:3347–3351PubMedCrossRefGoogle Scholar
  19. 19.
    Abbasi F, Reaven GM (2011) Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol. Metabolism 60:1673–1676PubMedCrossRefGoogle Scholar
  20. 20.
    Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR (1990) Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113:909–915PubMedCrossRefGoogle Scholar
  21. 21.
    DeFronzo RA (2009) From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lee SH, Kwon HS, Park YM, Ha HS, Jeong SH, Yang HK et al (2014) Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study. PLoS One 9(2):e90430PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Amini M, Janghorbani M (2007) Diabetes and impaired glucose regulation in first degree relatives of patients with type 2 diabetes in Isfahan, Iran: prevalence and risk factors. Rev Diabet Stud 4(169):76Google Scholar
  24. 24.
    American Diabetes Association (2008) Executive summary: Standard of Medical Care in Diabetes-2008. Diabetes Care 31:S5–S11Google Scholar
  25. 25.
    World Medical Association (2009) Declaration of Helsinki, Ethical principles for medical research involving human subjects. J Indian Med Assoc 107:403–405Google Scholar
  26. 26.
    American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  28. 28.
    Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care suppl 1:S5–S20Google Scholar
  29. 29.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645PubMedCrossRefGoogle Scholar
  30. 30.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  31. 31.
    Alyass A, Almgren P, Akerlund M, Dushoff J, Isomaa B, Nilsson P et al (2015) Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts. Diabetologia 58:87–97PubMedCrossRefGoogle Scholar
  32. 32.
    Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C, Hunt D et al (2007) Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 78:305–312PubMedCrossRefGoogle Scholar
  33. 33.
    Janghorbani M, Amini M (2009) Comparison of fasting glucose with post-load glucose values and glycated hemoglobin for prediction of type 2 diabetes: the Isfahan diabetes prevention study. Rev Diabet Stud 6:117–123PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Janghorbani M, Amini M (2012) Incidence of type 2 diabetes by HbA1c and OGTT: the Isfahan Diabetes Prevention Study. Acta Diabetol 49(Suppl 1):S73–S79PubMedCrossRefGoogle Scholar
  35. 35.
    Bastard JP, Lavoie ME, Messier V, Prud’homme D, Rabasa-Lhoret R (2012) Evaluation of two new surrogate indices including parameters not using insulin to assess insulin sensitivity/resistance in non-diabetic postmenopausal women: a MONET group study. Diabetes Metab 38:258–263PubMedCrossRefGoogle Scholar
  36. 36.
    Vasques AC, Novaes FS, de Oliveira MDS, Souza JR, Yamanaka A, Pareja JC et al (2011) TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract 93:e98–e100PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Mohsen Janghorbani
    • 1
    • 2
    • 3
  • Siedeh Zinab Almasi
    • 2
    • 3
  • Masoud Amini
    • 1
    • 3
  1. 1.Isfahan Endocrine and Metabolism Research CenterIsfahan University of Medical SciencesIsfahanIran
  2. 2.Department of Epidemiology and Biostatistics, School of Public HealthIsfahan University of Medical SciencesIsfahanIran
  3. 3.Department of Epidemiology and Isfahan Endocrine and Metabolism Research CenterIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations