Acta Diabetologica

, Volume 51, Issue 6, pp 927–932

Elevated 1-h post-load plasma glucose levels in subjects with normal glucose tolerance are associated with unfavorable inflammatory profile

  • Giorgio Sesti
  • Teresa Vanessa Fiorentino
  • Elena Succurro
  • Maria Perticone
  • Franco Arturi
  • Angela Sciacqua
  • Francesco Perticone
Original Article
  • 196 Downloads

Abstract

Glucose tolerant subjects with 1-h post-load glucose ≥155 mg/dl (NGT-1 h-high) are at increased risk for type 2 diabetes (T2DM). Prospective studies showed that chronic subclinical inflammation is a predictor of T2DM. In this study, we aimed to evaluate the inflammatory profile in NGT-1 h-high subjects as compared with individuals with 1-h post-load glucose <155 mg/dl (NGT-1 h-low). To this end, an oral glucose tolerance tests (OGTT) were performed in 1,099 nondiabetic whites. Cardio-metabolic risk factors including high-sensitivity C-reactive protein (hsCRP), erythrocyte sedimentation rate (ESR), fibrinogen, and complement C3 (C3) were determined. Of the 1,099 subjects examined, 497 had NGT-1 h-low, 154 had NGT-1 h-high, 158 had isolated impaired fasting glucose (IFG), and 290 had impaired glucose tolerance (IGT). As compared with NGT-1 h-low, NGT-1 h-high and IGT subjects exhibited significantly higher hsCRP, ESR, fibrinogen, and C3 levels. Notably, hsCRP, ESR, and C3 were also significantly higher as compared with IFG individuals. In a logistic regression analysis adjusted for age and gender, NGT-1 h-high and IGT subjects had a 1.8-fold increased risk of having the highest value of the Inflammatory Score. These data suggest that a value of a 1-h OGTT glucose ≥155 mg/dl may be helpful to identify a subset of normal glucose tolerance individuals at risk for chronic subclinical inflammation, a predictor of T2DM, and cardiovascular diseases.

Keywords

Glucose tolerance 1-h post-load plasma glucose Subclinical inflammation Inflammatory Score 

References

  1. 1.
    Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350PubMedCrossRefGoogle Scholar
  2. 2.
    Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403PubMedCrossRefGoogle Scholar
  3. 3.
    Chiasson JL, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077PubMedCrossRefGoogle Scholar
  4. 4.
    DeFronzo RA, Tripathy D, Schwenke DC et al (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364:1104–1115PubMedCrossRefGoogle Scholar
  5. 5.
    Chiasson JL, Josse RG, Gomis R et al (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–494PubMedCrossRefGoogle Scholar
  6. 6.
    Ratner R, Goldberg R, Haffner S et al (2005) Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 28:888–894PubMedCrossRefGoogle Scholar
  7. 7.
    Nathan DM, Davidson MB, DeFronzo RA et al (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30:753–759PubMedCrossRefGoogle Scholar
  8. 8.
    Laakso M, Zilinskaite J, Hansen T et al (2008) Insulin sensitivity, insulin release and GLP-1 levels in subjects with IFG and/or IGT in the EUGENE2 study. Diabetologia 51:502–511PubMedCrossRefGoogle Scholar
  9. 9.
    Cardellini M, Andreozzi F, Laratta E et al (2007) Plasma interleukin-6 levels are increased in subjects with impaired glucose tolerance but not in those with impaired fasting glucose in a cohort of Italian Caucasians. Diabetes Metab Res Rev 23:141–145PubMedCrossRefGoogle Scholar
  10. 10.
    Unwin N, Shaw J, Zimmet P, Alberti KG (2002) Impaired glucose tolerance and impaired fasting glycemia: the current status on definition and intervention. Diabet Med 19:708–723PubMedCrossRefGoogle Scholar
  11. 11.
    Abdul-Ghani MA, Abdul-Ghani T, Ali N, Defronzo RA (2008) One-hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care 31:1650–1655PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Abdul-Ghani MA, Lyssenko V, Tuomi T et al (2009) Fasting versus post-load plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia study. Diabetes Care 32:281–286PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Succurro E, Marini MA, Arturi F et al (2009) Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis. Atherosclerosis 207:245–249PubMedCrossRefGoogle Scholar
  14. 14.
    Succurro E, Arturi F, Lugarà M et al (2010) One-hour post-load plasma glucose levels are associated with kidney dysfunction. Clin J Am Soc Nephrol 5:1922–1927PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bardini G, Dicembrini I, Cresci B, Rotella CM (2010) Inflammation markers and metabolic characteristics of subjects with 1-h plasma glucose levels. Diabetes Care 33:411–413PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sciacqua A, Miceli S, Carullo G et al (2011) One-hour post-load plasma glucose levels and left ventricular mass in hypertensive patients. Diabetes Care 34:1406–1411PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sciacqua A, Miceli S, Greco L et al (2011) One-hour post-load plasma glucose levels and diastolic function in hypertensive patients. Diabetes Care 34:2291–2296PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Succurro E, Arturi F, Grembiale A et al (2011) One-hour post-load plasma glucose levels are associated with elevated liver enzymes. Nutr Metab Cardiovasc Dis 21:713–718PubMedCrossRefGoogle Scholar
  19. 19.
    Marini MA, Succurro E, Frontoni S et al (2012) Insulin sensitivity, β-cell function, and incretin effect in individuals with elevated 1-h postload plasma glucose levels. Diabetes Care 35:868–872PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Perticone F, Sciacqua A, Tassone EJ et al (2012) One-hour post-load plasma glucose and IGF-1 in hypertensive patients. Eur J Clin Invest 42:1325–1331PubMedCrossRefGoogle Scholar
  21. 21.
    Perticone F, Sciacqua A, Perticone M et al (2012) Serum uric acid and 1-h postload glucose in essential hypertension. Diabetes Care 35:153–157PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sciacqua A, Maio R, Miceli S et al (2012) Association between one-hour post-load plasma glucose levels and vascular stiffness in essential hypertension. PLoS ONE 7:e44470PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Orencia AJ, Daviglus ML, Dyer AR et al (1997) One hour postload plasma glucose and risks of fatal coronary heart disease and stroke among nondiabetic men and women: the Chicago Heart Association Detection Project in Industry (CHA) Study. J Clin Epidemiol 50:1369–1376PubMedCrossRefGoogle Scholar
  24. 24.
    Strandberg TE, Pienimäki T, Strandberg AY et al (2011) One-hour glucose, mortality, and risk of diabetes: a 44-year prospective study in men. Arch Intern Med 171:941–943PubMedCrossRefGoogle Scholar
  25. 25.
    Duncan BB, Schmidt MI, Pinked JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes. The arteriosclerosis risk in communities study. Diabetes 52:1799–1805PubMedCrossRefGoogle Scholar
  26. 26.
    Perticone F, Maio R, Sciacqua A et al (2008) Endothelial dysfunction and CRP are risk factors for diabetes in essential hypertension. Diabetes 57:167–171PubMedCrossRefGoogle Scholar
  27. 27.
    Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E et al (2012) C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367:1310–1320PubMedCrossRefGoogle Scholar
  28. 28.
    Ridker PM, Wilson PW, Grundy SM (2004) Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 109:2818–2825PubMedCrossRefGoogle Scholar
  29. 29.
    Ford ES (2002) Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults. Am J Epidemiol 155:57–64PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt MI, Duncan BB, Sharett AR et al (1999) Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353:1649–1652PubMedCrossRefGoogle Scholar
  31. 31.
    Engstrom G, Hedblad B, Eriksson KF et al (2005) Complement C3 is a risk factor for the development of diabetes: a population-based cohort study. Diabetes 54:570–575PubMedCrossRefGoogle Scholar
  32. 32.
    Hess K, Alzahrani SH, Mathai M et al (2013) A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia 55:1103–1113CrossRefGoogle Scholar
  33. 33.
    Matsuda M, De Fronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470PubMedCrossRefGoogle Scholar
  34. 34.
    Levitan EB, Song Y, Ford ES, Liu S (2004) Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 164:2147–2155PubMedCrossRefGoogle Scholar
  35. 35.
    Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M (2007) What is the best predictor of future type 2 diabetes? Diabetes Care 30:1544–1548PubMedCrossRefGoogle Scholar
  36. 36.
    Esposito K, Nappo F, Marfella R et al (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–2072PubMedCrossRefGoogle Scholar
  37. 37.
    Verma S, Wang CH, Li SH et al (2002) A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 106:913–919PubMedCrossRefGoogle Scholar
  38. 38.
    D’Alessandris C, Lauro R, Presta I, Sesti G (2007) C-Reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. Diabetologia 50:840–849PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Giorgio Sesti
    • 1
  • Teresa Vanessa Fiorentino
    • 1
  • Elena Succurro
    • 1
  • Maria Perticone
    • 1
  • Franco Arturi
    • 1
  • Angela Sciacqua
    • 1
  • Francesco Perticone
    • 1
  1. 1.Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroViale Europa, CatanzaroItaly

Personalised recommendations