Acta Diabetologica

, Volume 51, Issue 2, pp 199–204

Gene expression analysis of human islets in a subject at onset of type 1 diabetes

  • Johan Hopfgarten
  • Per-Anton Stenwall
  • Anna Wiberg
  • Mahesh Anagandula
  • Sofie Ingvast
  • Therese Rosenling
  • Olle Korsgren
  • Oskar Skog
Original Article


Swollen islet cells have been repeatedly described at onset of type 1 diabetes, but the underlying mechanism of this observation, termed hydropic degeneration, awaits characterization. In this study, laser capture microdissection was applied to extract the islets from an organ donor that died at onset of type 1 diabetes and from an organ donor without pancreatic disease. Morphologic analysis revealed extensive hydropic degeneration in 73 % of the islets from the donor with type 1 diabetes. Expression levels of genes involved in apoptosis, ER stress, beta cell function, and inflammation were analyzed in isolated and laser-captured islets by qPCR. The chemokine MCP-1 was expressed in islets from the donor with type 1 diabetes while undetectable in the control donor. No other signs of inflammation were detected. There were no signs of apoptosis on the gene expression level, which was also confirmed by negative immunostaining for cleaved caspase-8. There was an increased expression of the transcription factor ATF4, involved in transcription of ER stress genes, in the diabetic islets, but no further signs of ER stress were identified. In summary, on the transcription level, islets at onset of type 1 diabetes in which many beta cells display hydropic degeneration show no obvious signs of apoptosis, ER stress, or inflammation, supporting the notion that these cells are responding normally to high glucose and eventually succumbing to beta cell exhaustion. Also, this study validates the feasibility of performing qPCR analysis of RNA extracted from islets from subjects with recent onset of T1D and healthy controls by laser capture microdissection.


Hydropic degeneration Type 1 diabetes Pathogenesis Etiology Laser capture microdissection 


  1. 1.
    Weichselbaum A, Stangl E (1901) Zur Kenntniss der feineren Veränderungen des Pankreas bei Diabetes mellitus. Wien Klin Wochenschr 41:968–972Google Scholar
  2. 2.
    Weichselbaum A (1910) Über die Veränderungen des Pankreas bei Diabetes mellitus. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften 119:73–281Google Scholar
  3. 3.
    Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633PubMedGoogle Scholar
  4. 4.
    Somoza N, Vargas F, Roura-Mir C et al (1994) Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol 153:1360–1377PubMedGoogle Scholar
  5. 5.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRefGoogle Scholar
  6. 6.
    Toreson WE (1951) Glycogen infiltration (so-called hydropic degeneration) in the pancreas in human and experimental diabetes mellitus. Am J Pathol 27:327–347PubMedCentralPubMedGoogle Scholar
  7. 7.
    Volk BW, Lazarus SS (1962) Ultramicroscopy of dog islets in growth hormone diabetes. Diabetes 11:426–435PubMedGoogle Scholar
  8. 8.
    Blixt M, Niklasson B, Sandler S (2007) Characterization of [beta]-cell function of pancreatic islets isolated from bank voles developing glucose intolerance/diabetes: an animal model showing features of both type 1 and type 2 diabetes mellitus, and a possible role of the Ljungan virus. Gen Comp Endocrinol 154:41–47PubMedCrossRefGoogle Scholar
  9. 9.
    Zini E, Osto M, Franchini M et al (2009) Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 52:336–346PubMedCrossRefGoogle Scholar
  10. 10.
    Jacobson S, Heuts F, Juarez J et al (2010) Alloreactivity but failure to reject human islet transplants by humanized Balb/c/Rag2gc mice. Scand J Immunol 71:83–90PubMedCrossRefGoogle Scholar
  11. 11.
    Olsson R, Carlsson PO (2005) Better vascular engraftment and function in pancreatic islets transplanted without prior culture. Diabetologia 48:469–476PubMedCrossRefGoogle Scholar
  12. 12.
    Korsgren S, Molin Y, Salmela K, Lundgren T, Melhus A, Korsgren O (2012) On the etiology of type 1 diabetes: a new animal model signifying a decisive role for bacteria eliciting an adverse innate immunity response. Am J Pathol 181:1735–1748PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Goto M, Eich TM, Felldin M et al (2004) Refinement of the automated method for human islet isolation and presentation of a closed system for in vitro islet culture. Transplantation 78:1367–1375PubMedCrossRefGoogle Scholar
  14. 14.
    Marselli L, Sgroi DC, Bonner-Weir S, Weir GC (2009) Laser capture microdissection of human pancreatic beta-cells and RNA preparation for gene expression profiling. Methods Mol Biol 560:87–98PubMedCrossRefGoogle Scholar
  15. 15.
    Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS ONE 5:e11499PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Edwards RA (2007) Laser capture microdissection of mammalian tissue. J Vis Exp 309Google Scholar
  17. 17.
    Gianani R, Campbell-Thompson M, Sarkar SA et al (2010) Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia 53:690–698PubMedCrossRefGoogle Scholar
  18. 18.
    Atkinson MA, Rhodes CJ (2005) Pancreatic regeneration in type 1 diabetes: dreams on a deserted islet? Diabetologia 48:2200–2202PubMedCrossRefGoogle Scholar
  19. 19.
    Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Greenbaum CJ, Beam CA, Boulware D et al (2012) Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 61:2066–2073PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gramm HJ, Meinhold H, Bickel U et al (1992) Acute endocrine failure after brain death? Transplantation 54:851–857PubMedCrossRefGoogle Scholar
  22. 22.
    Contreras JL, Eckstein C, Smyth CA et al (2003) Brain death significantly reduces isolated pancreatic islet yields and functionality in vitro and in vivo after transplantation in rats. Diabetes 52:2935–2942PubMedCrossRefGoogle Scholar
  23. 23.
    Purins K, Sedigh A, Molnar C et al (2011) Standardized experimental brain death model for studies of intracranial dynamics, organ preservation, and organ transplantation in the pig. Crit Care Med 39:512–517PubMedCrossRefGoogle Scholar
  24. 24.
    Foulis AK, Farquharson MA, Hardman R (1987) Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:333–343PubMedCrossRefGoogle Scholar
  25. 25.
    Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Johan Hopfgarten
    • 1
  • Per-Anton Stenwall
    • 1
  • Anna Wiberg
    • 1
  • Mahesh Anagandula
    • 1
  • Sofie Ingvast
    • 1
  • Therese Rosenling
    • 1
  • Olle Korsgren
    • 1
  • Oskar Skog
    • 1
  1. 1.IGP, Rudbeck Laboratory C11, Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden

Personalised recommendations