Acta Diabetologica

, Volume 50, Issue 3, pp 401–408 | Cite as

PPARG2 Pro12Ala and ADAMTS9 rs4607103 as “insulin resistance loci” and “insulin secretion loci” in Italian individuals. The GENFIEV study and the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 4

  • M. Trombetta
  • S. Bonetti
  • M. L. Boselli
  • R. Miccoli
  • E. Trabetti
  • G. Malerba
  • P. F. Pignatti
  • E. Bonora
  • S. Del Prato
  • R. C. Bonadonna
Original Article


We investigated cross-sectionally whether the type 2 diabetes (T2DM) risk alleles of rs1801282 (PPARG2) and rs4607103 (ADAMTS9) were associated with T2DM and/or insulin sensitivity (IS) and beta cell function (βF) in Italians without and with newly diagnosed T2DM. In 676 nondiabetic subjects (336 NGR and 340 IGR) from the GENFIEV study and in 597 patients from the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS), we (1) genotyped rs1801282 and rs4607103, (2) assessed βF by C-peptide/glucose modeling after OGTT, and (3) assessed IS by HOMA-IR in both studies and by euglycemic insulin clamp in VNDS only. Logistic, linear, and two-stage least squares regression analyses were used to test (a) genetic associations with T2DM and with pathophysiological phenotypes, (b) causal relationships of the latter ones with T2DM by a Mendelian randomization design. Both SNPs were associated with T2DM. The rs4607103 risk allele was associated to impaired βF (p < 0.01) in the GENFIEV study and in both cohorts combined. The rs1801282 genotype was associated with IS both in the GENFIEV study (p < 0.03) and in the VNDS (p < 0.03), whereas rs4607103 did so in the VNDS only (p = 0.01). In a Mendelian randomization design, both HOMA-IR (instrumental variables: rs1801282, rs4607103) and βF (instrumental variable: rs4607103) were related to T2DM (p < 0.03–0.01 and p < 0.03, respectively). PPARG2 and ADAMTS9 variants are both associated with T2DM and with insulin resistance, whereas only ADAMTS9 may be related to βF. Thus, at least in Italians, they may be considered bona fide “insulin resistance genes”.


Type 2 diabetes Insulin resistance PPARG ADAMTS9 



This study was supported in part by an EFSD/Novartis grant (to RCB), research grants of University of Verona (to RCB and EB), and a grant of the Società Italiana di Diabetologia for the GENFIEV Study (to SDP). The superb technical help of Monica Zardini and Federica Moschetta is gratefully acknowledged (Department of Medicine, University of Verona, Verona, Italy). PPARG2 and ADAMTS9 genotyping was performed with XBead Reader of the Center of Functional Genomics of University of Verona, under the supervision of Massimo Delledonne and Alberto Ferrarini, whose contributions are gratefully acknowledged.

Conflict of interest

None of the authors declared any conflict of interest.

Supplementary material

592_2012_443_MOESM1_ESM.doc (224 kb)
Supplementary material 1 (DOC 223 kb)


  1. 1.
    Trombetta M, Calì A, Vettore M, Caruso B, Dorizzi R, Avogaro A, Bonora E, Bonadonna RC (2011) Type 2 diabetes mellitus: a disease of the governance of the glucose-insulin system. An experimental metabolic control analysis study. Nutrition, metabolism and cardiovascular disease in pressGoogle Scholar
  2. 2.
    Ahlqvist E, Ahluwalia TS, Groop L (2011) Genetics of type 2 diabetes. Clin Chem 57:241–254PubMedCrossRefGoogle Scholar
  3. 3.
    Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005PubMedCrossRefGoogle Scholar
  4. 4.
    Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedCrossRefGoogle Scholar
  5. 5.
    Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110PubMedCrossRefGoogle Scholar
  6. 6.
    Altshuler D, Hirschhorn JN, Klannemark M et al (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80PubMedCrossRefGoogle Scholar
  7. 7.
    Lu M, Sarruf DA, Talukdar S et al (2011) Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat Med 17:618–622PubMedCrossRefGoogle Scholar
  8. 8.
    Ahmed W, Ziouzenkova O, Brown J et al (2007) PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J Intern Med 262:184–198PubMedCrossRefGoogle Scholar
  9. 9.
    Ludovico O, Pellegrini F, Di Paola R et al (2007) Heterogeneous effect of peroxisome proliferator-activated receptor gamma2 Ala12 variant on type 2 diabetes risk. Obesity (Silver Spring) 15:1076–1081CrossRefGoogle Scholar
  10. 10.
    Buzzetti R, Petrone A, Ribaudo MC et al (2004) The common PPAR-gamma2 Pro12Ala variant is associated with greater insulin sensitivity. Eur J Hum Genet 12:1050–1054PubMedCrossRefGoogle Scholar
  11. 11.
    Tonjes A, Scholz M, Loeffler M, Stumvoll M (2006) Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma with Pre-diabetic phenotypes: meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care 29:2489–2497PubMedCrossRefGoogle Scholar
  12. 12.
    Vanttinen M, Nuutila P, Pihlajamaki J et al (2005) The effect of the Ala12 allele of the peroxisome proliferator-activated receptor-gamma2 gene on skeletal muscle glucose uptake depends on obesity: a positron emission tomography study. J Clin Endocrinol Metab 90:4249–4254PubMedCrossRefGoogle Scholar
  13. 13.
    Honka MJ, Vanttinen M, Iozzo P et al (2009) The Pro12Ala polymorphism of the PPARgamma2 gene is associated with hepatic glucose uptake during hyperinsulinemia in subjects with type 2 diabetes mellitus. Metabolism 58:541–546PubMedCrossRefGoogle Scholar
  14. 14.
    Vaccaro O, Mancini FP, Ruffa G et al (2002) Fasting plasma free fatty acid concentrations and Pro12Ala polymorphism of the peroxisome proliferator-activated receptor (PPAR) gamma2 gene in healthy individuals. Clin Endocrinol (Oxf) 57:481–486CrossRefGoogle Scholar
  15. 15.
    Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645PubMedCrossRefGoogle Scholar
  16. 16.
    Boesgaard TW, Gjesing AP, Grarup N et al (2009) Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients–EUGENE2 study. PLoS ONE 4:e7236PubMedCrossRefGoogle Scholar
  17. 17.
    Simonis-Bik AM, Nijpels G, van Haeften TW et al (2010) Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes 59:293–301PubMedCrossRefGoogle Scholar
  18. 18.
    Staiger H, Machicao F, Kantartzis K et al (2008) Novel meta-analysis-derived type 2 diabetes risk loci do not determine prediabetic phenotypes. PLoS ONE 3:e3019PubMedCrossRefGoogle Scholar
  19. 19.
    Sanghera DK, Been L, Ortega L et al (2009) Testing the association of novel meta-analysis-derived diabetes risk genes with type II diabetes and related metabolic traits in Asian Indian Sikhs. J Hum Genet 54:162–168PubMedCrossRefGoogle Scholar
  20. 20.
    Grarup N, Andersen G, Krarup NT et al (2008) Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 57:2534–2540PubMedCrossRefGoogle Scholar
  21. 21.
    Mancini FP, Vaccaro O, Sabatino L et al (1999) Pro12Ala substitution in the peroxisome proliferator-activated receptor-gamma2 is not associated with type 2 diabetes. Diabetes 48:1466–1468PubMedCrossRefGoogle Scholar
  22. 22.
    Vangipurapu J, Stancakova A, Pihlajamaki J et al (2011) Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. Diabetologia 54:563–571PubMedCrossRefGoogle Scholar
  23. 23.
    Bonadonna RC (2004) Alterations of glucose metabolism in type 2 diabetes mellitus An overview. Rev Endocr Metab Disord 5:89–97PubMedCrossRefGoogle Scholar
  24. 24.
    Bianchi C, Miccoli R, Bonadonna RC et al. (2010) Metabolic syndrome in subjects at high risk for type 2 diabetes: The genetic, physiopathology and evolution of type 2 diabetes (GENFIEV) study. Nutr Metab Cardiovasc Dis 21(9):699–705Google Scholar
  25. 25.
    Bonetti S, Trombetta M, Malerba G et al (2011) Variants and haplotypes of TCF7L2 are associated with beta-cell function in patients with newly diagnosed type 2 diabetes: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 1. J Clin Endocrinol Metab 96:E389–E393PubMedCrossRefGoogle Scholar
  26. 26.
    Bonetti S, Trombetta M, Boselli ML et al (2011) Variants of GCKR Affect Both {beta}-cell and kidney function in patients with Newly Diagnosed Type 2 Diabetes: the Verona Newly Diagnosed Type 2 Diabetes Study 2. Diabetes Care 34:1205–1210PubMedCrossRefGoogle Scholar
  27. 27.
    Bonadonna RC, Heise T, Arbet-Engels C et al (2010) Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab 95:5028–5036PubMedCrossRefGoogle Scholar
  28. 28.
    Lin CH, Yeakley JM, McDaniel TK, Shen R (2009) Medium- to high-throughput SNP genotyping using veracode microbeads. Methods Mol Biol 496:129–142PubMedCrossRefGoogle Scholar
  29. 29.
    Florez JC, Jablonski KA, Sun MW et al (2007) Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J Clin Endocrinol Metab 92:1502–1509PubMedCrossRefGoogle Scholar
  30. 30.
    Kanat M, Norton L, Winnier D, Jenkinson C, DeFronzo RA, Abdul-Ghani MA (2011) Impaired early—but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol 48:209–217PubMedCrossRefGoogle Scholar
  31. 31.
    Gallwitz B, Kazda C, Kraus P, Nicolay C, Schernthaner G (2011) Contribution of insulin deficiency and insulin resistance to the development of type 2 diabetes: nature of early stage diabetes. Acta Diabetol. doi: 1007/s00592-011-0319-4
  32. 32.
    Schleinitz D, Tonjes A, Bottcher Y et al (2010) Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits. Horm Metab Res 42:14–22PubMedCrossRefGoogle Scholar
  33. 33.
    Ylonen SK, Salminen I, Lyssenko V et al (2008) The Pro12Ala polymorphism of the PPAR-gamma2 gene affects associations of fish intake and marine n-3 fatty acids with glucose metabolism. Eur J Clin Nutr 62:1432–1439PubMedCrossRefGoogle Scholar
  34. 34.
    Barrett EJ, Eggleston EM, Inyard AC et al (2009) The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia 52:752–764PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou Y, Zhang E, Berggreen C et al (2012) Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway. Hum Mol Genet 21:196–207PubMedCrossRefGoogle Scholar
  36. 36.
    Bonora E, Targher G, Formentini G et al (2004) The metabolic syndrome is an independent predictor of cardiovascular disease in type 2 diabetic subjects. Prospective data from the verona diabetes complications study. Diabet Med 21:52–58PubMedCrossRefGoogle Scholar
  37. 37.
    Bonora E, Capaldo B, Perin PC et al (2008) Hyperinsulinemia and insulin resistance are independently associated with plasma lipids, uric acid and blood pressure in non-diabetic subjects. The GISIR database. Nutr Metab Cardiovasc Dis 18:624–631PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • M. Trombetta
    • 1
    • 2
  • S. Bonetti
    • 1
  • M. L. Boselli
    • 1
  • R. Miccoli
    • 3
  • E. Trabetti
    • 4
  • G. Malerba
    • 4
  • P. F. Pignatti
    • 4
  • E. Bonora
    • 1
    • 2
  • S. Del Prato
    • 3
  • R. C. Bonadonna
    • 1
    • 2
  1. 1.Division of Endocrinology and Metabolism, Department of Medicine, Ospedale Civile MaggioreUniversity of VeronaVeronaItaly
  2. 2.Azienda Ospedaliera Universitaria Integrata di VeronaVeronaItaly
  3. 3.Department of Endocrinology and MetabolismUniversity of PisaPisaItaly
  4. 4.Department of Life and Reproduction SciencesUniversity of VeronaVeronaItaly

Personalised recommendations