Acta Diabetologica

, Volume 50, Issue 3, pp 383–389

Fasting apolipoprotein B48 is a marker for peripheral arterial disease in type 2 diabetes

  • J. Mancera-Romero
  • M. A. Sánchez-Chaparro
  • J. Rioja
  • M. J. Ariza
  • G. Olivecrona
  • P. González-Santos
  • P. Valdivielso
Original Article


An earlier study showed that fasting and postprandial concentrations of apolipoprotein B48 were raised in patients with type 2 diabetes (DM2) and peripheral arterial disease (PAD) as compared with persons without DM2 or persons with DM2 but not PAD. The aim of this study was to confirm the association of PAD and B48 in a larger group of patients with DM2 and the relation of B48 with the preheparin lipoprotein lipase (LPL) mass. We studied 456 patients with DM2. PAD was defined as an ankle-brachial index (ABI) <0.9. Apolipoprotein B48 was quantified by ELISA. Apo B48 was significantly higher in the group with an ABI <0.9 than the groups with ABI of 0.9–1.3 and >1.3 (10.7 ± 6.28 vs. 9.24 ± 5.5 vs. 9.17 ± 8.8 mg/L, ANOVA test, p < 0.05). B48 was independently associated with an ABI <0.9 (OR 1.053; 95 % CI, 1.013–1.094; p < 0.05), together with smoking and duration of diabetes. The preheparin LPL mass was similar in the patients with and without PAD. In conclusion, we confirmed that fasting B48 is an independent marker of PAD in patients with DM2, unrelated to the preheparin LPL mass, statin therapy or glucose lowering treatment.


Apolipoprotein B48 Type 2 diabetes Peripheral arterial disease Ankle-brachial index LPL mass 


  1. 1.
    Jude EB, Eleftheriadou I, Tentolouris N (2010) Peripheral arterial disease in diabetes—a review. Diabet Med 27:4–14PubMedCrossRefGoogle Scholar
  2. 2.
    Gæde P, Lund-Andersen H, Parving H-H, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591PubMedCrossRefGoogle Scholar
  3. 3.
    Fogelstrand P, Borén J (2012) Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis 22:1–7PubMedCrossRefGoogle Scholar
  4. 4.
    Stalenhoef AF, de Graaf J (2008) Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol 19:355–361PubMedCrossRefGoogle Scholar
  5. 5.
    Valdivielso P, Hidalgo A, Rioja J, Aguilar I, Ariza MJ, Gonzalez-Alegre T, Gonzalez-Santos P (2007) Smoking and postprandial triglycerides are associated with vascular disease in patients with type 2 diabetes. Atherosclerosis 194:391–396PubMedCrossRefGoogle Scholar
  6. 6.
    Valdivielso P, Puerta S, Rioja J et al (2010) Postprandial apolipoprotein B48 is associated with asymptomatic peripheral arterial disease: a study in patients with type 2 diabetes and controls. Clin Chim Acta 411:433–437PubMedCrossRefGoogle Scholar
  7. 7.
    Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297:E271–E288PubMedCrossRefGoogle Scholar
  8. 8.
    Olivecrona T, Olivecrona G (2000) Determination and clinical significance of lipoprotein lipase and hepatic lipase. In: Rifai N, Warnick G, Dominiczak M (eds) Handbook of lipoprotein testing. AACC Press, Washington, pp 479–498Google Scholar
  9. 9.
    Vilella E, Joven J, Fernández M, Vilaró S, Brunzell JD, Olivecrona T, Bengtsson-Olivecrona G (1993) Lipoprotein lipase in human plasma is mainly inactive and associated with cholesterol-rich lipoproteins. J Lipid Res 34:1555–1564PubMedGoogle Scholar
  10. 10.
    Kobayashi J, Saito K, Fukamachi I, Taira K, Takahashi K, Bujo H, Saito Y (2001) Pre-heparin plasma lipoprotein lipase mass: correlation with intra-abdominal visceral fat accumulation. Horm Metab Res 33:412–416PubMedCrossRefGoogle Scholar
  11. 11.
    Zambon A, Schmidt I, Beisiegel U, Brunzell JD (1996) Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins. J Lipid Res 37:2394–2404PubMedGoogle Scholar
  12. 12.
    Ranganathan G, Unal R, Pokrovskaya ID, Tripathi P, Rotter JI, Goodarzi MO, Kern PA (2011) The lipoprotein lipase (LPL) S447X gain of function variant involves increased mRNA translation. Atherosclerosis 221:143–147Google Scholar
  13. 13.
    Potier L, Halbron M, Bouilloud F et al (2009) Ankle-to-brachial ratio index underestimates the prevalence of peripheral occlusive disease in diabetic patients at high risk for arterial disease. Diabetes Care 32:e44PubMedCrossRefGoogle Scholar
  14. 14.
    Leng GC, Fowkes FG (1992) The Edinburgh Claudication Questionnaire: an improved version of the WHO/Rose Questionnaire for use in epidemiological surveys. J Clin Epidemiol 45:1101–1109PubMedCrossRefGoogle Scholar
  15. 15.
    Ariza MJ, Sanchez-Chaparro MA, Baron FJ et al (2010) Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study. BMC Med Genet 11:66PubMedCrossRefGoogle Scholar
  16. 16.
    Sato I, Ishikawa Y, Ishimoto A et al (2009) Significance of measuring serum concentrations of remnant lipoproteins and apolipoprotein B-48 in fasting period. J Atheroscler Thromb 16:12–20PubMedCrossRefGoogle Scholar
  17. 17.
    Sakai N, Uchida Y, Ohashi K et al (2003) Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J Lipid Res 44:1256–1262PubMedCrossRefGoogle Scholar
  18. 18.
    Lapice E, Cipriano P, Patti L, Romano G, Vaccaro O, Rivellese A (2012) Fasting APO B48 levels are associated with microalbuminuria in patients with type 2 diabetes. Acta Diabetol. doi:10.1007/s00592-012-0386-1
  19. 19.
    Hayashi T, Hirano T, Taira T, Tokuno A, Mori Y, Koba S, Adachi M (2008) Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis 197:154–158PubMedCrossRefGoogle Scholar
  20. 20.
    Tanimura K, Nakajima Y, Nagao M et al (2008) Association of serum apolipoprotein B48 level with the presence of carotid plaque in type 2 diabetes mellitus. Diabetes Res Clin Pract 81:338–344PubMedCrossRefGoogle Scholar
  21. 21.
    Alipour A, Valdivielso P, Elte JWF et al. (2011) Exploring the value of apoB48 as marker for atherosclerosis in clinical practice. Eur J Clin Invest 42:702–708Google Scholar
  22. 22.
    Rizza S, Cardellini M, Martelli E et al (2010) Occult impaired glucose regulation in patients with atherosclerosis is associated to the number of affected vascular districts and inflammation. Atherosclerosis 212:316–320PubMedCrossRefGoogle Scholar
  23. 23.
    Lopez-Miranda J, Williams C, Lairon D (2007) Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 98:458–473PubMedCrossRefGoogle Scholar
  24. 24.
    Reyes-Soffer G, Holleran S, Karmally W et al (2009) Measures of postprandial lipoproteins are not associated with coronary artery disease in patients with type 2 diabetes mellitus. J Lipid Res 50:1901–1909PubMedCrossRefGoogle Scholar
  25. 25.
    Werner C, Filmer A, Fritshc M, Groenewald S, Gräber S, Böhm M, Laufs U (2011) The Homburg Cream and Sugar Study (HCS)Google Scholar
  26. 26.
    Tomkin GH, Owens D (2012) The chylomicron: relationship to atherosclerosis. Int J Vasc Med 2012:784536PubMedGoogle Scholar
  27. 27.
    Kobayashi J, Nohara A, Kawashiri MA, Inazu A, Koizumi J, Nakajima K, Mabuchi H (2007) Serum lipoprotein lipase mass: clinical significance of its measurement. Clin Chim Acta 378:7–12PubMedCrossRefGoogle Scholar
  28. 28.
    Hanyu O, Miida T, Kosuge K et al (2007) Preheparin lipoprotein lipase mass is a practical marker of insulin resistance in ambulatory type 2 diabetic patients treated with oral hypoglycemic agents. Clin Chim Acta 384:118–123PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi J, Nakajima K, Nohara A et al. (2007) The relationship of serum lipoprotein lipase mass with fasting serum apolipoprotein B-48 and remnant-like particle triglycerides in type 2 diabetic patients. Horm Metab Res 39:612–616Google Scholar
  30. 30.
    Nierman MC, Rip J, Kuivenhoven J-A et al (2005) Carriers of the frequent lipoprotein lipase S447X variant exhibit enhanced postprandial apoprotein B-48 clearance. Metab, Clin Exp 54:1499–1503CrossRefGoogle Scholar
  31. 31.
    Tornvall P, Olivecrona G, Karpe F, Hamsten A, Olivecrona T (1995) Lipoprotein lipase mass and activity in plasma and their increase after heparin are separate parameters with different relations to plasma lipoproteins. Arterioscler Thromb Vasc Biol 15:1086–1093PubMedCrossRefGoogle Scholar
  32. 32.
    Wållberg-Jonsson S, Dahlén G, Johnson O, Olivecrona G, Rantapää-Dahlqvist S (1996) Lipoprotein lipase in relation to inflammatory activity in rheumatoid arthritis. J Intern Med 240:373–380PubMedCrossRefGoogle Scholar
  33. 33.
    Tan GD, Olivecrona G, Vidal H, Frayn KN, Karpe F (2006) Insulin sensitisation affects lipoprotein lipase transport in type 2 diabetes: role of adipose tissue and skeletal muscle in response to rosiglitazone. Diabetologia 49:2412–2418PubMedCrossRefGoogle Scholar
  34. 34.
    Saiki A, Oyama T, Endo K et al (2007) Preheparin serum lipoprotein lipase mass might be a biomarker of metabolic syndrome. Diabetes Res Clin Pract 76:93–101PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • J. Mancera-Romero
    • 1
  • M. A. Sánchez-Chaparro
    • 2
    • 3
  • J. Rioja
    • 3
  • M. J. Ariza
    • 3
  • G. Olivecrona
    • 4
  • P. González-Santos
    • 2
    • 3
  • P. Valdivielso
    • 2
    • 3
  1. 1.Centro de Salud “Ciudad Jardín”, Servicio Andaluz de SaludMálagaSpain
  2. 2.Internal Medicine UnitHospital Universitario “Virgen de la Victoria”MálagaSpain
  3. 3.Lipid and Arteriosclerosis Laboratory, Department of Medicine and Dermatology, CIMES Center, School of MedicineUniversity of MálagaMálagaSpain
  4. 4.Department of Medical Biosciences/Physiological ChemistryUmea UniversityUmeåSweden

Personalised recommendations