Acta Diabetologica

, Volume 50, Issue 3, pp 373–382

Effect of normalization of fasting glucose by intensified insulin therapy and influence of eNOS polymorphisms on the incidence of restenosis after peripheral angioplasty in patients with type 2 diabetes: a randomized, open-label clinical trial

  • Pier Marco Piatti
  • Enrico Marone
  • Manuela Mantero
  • Emanuela Setola
  • Elena Galluccio
  • Pietro Lucotti
  • Ermal Shehaj
  • Valentina Villa
  • Francesca Perticone
  • Massimo Venturini
  • Alessio Palini
  • Flavio Airoldi
  • Ezio Faglia
  • Alessandro Del Maschio
  • Antonio Colombo
  • Roberto Chiesa
  • Emanuele Bosi
  • Lucilla D. Monti
Original Article

Abstract

Primary objective was to evaluate whether an intensified insulin therapy (IIT) incorporating the target of normal fasting glucose and HbA1c levels could halve the incidence of restenosis/amputation/SCA/death at 6 months after peripheral angioplasty compared with standard care (SC) in patients with type 2 diabetes (DMT2) affected by critical limb ischemia (CLI). Forty-six consecutive patients with DMT2 and CLI were randomly assigned to a parallel, open-label study with IIT (basal-bolus glulisine + glargine administrations) or SC (glargine administration + oral antidiabetic drugs). A SNP of eNOS (rs753482-A>C) and circulating CD34+ and CD34+KDR+ progenitor cells were determined. At the end of the study, although HbA1c levels were lower in IIT than in SC (6.9 ± 1.3 % vs. 7.6 ± 1.2 %, p < 0.05), IIT did not reduce the cumulative incidence of restenosis/amputation/SCA/death (52 and 65 %, respectively, odd ratio 0.59; CI 95 %: 0.21–1.62, p = 0.59). rs753482AC+CC as compared with rs753482AA increased the cumulative incidence of restenosis/amputation/SCA/death (79 and 42 %; odd ratio 5.3; CI 95 %: 1.41–19.5, p < 0.02). Baseline CD34+KDR+ were higher in rs753482AA (166.2 ± 154.0 × 106 events) than in rs753482AC+CC (63.1 ± 26.9 × 106 events, p < 0.01). At the end of the study, the highest circulating CD34+KDR+ were found in IIT rs753482AA (246.9 ± 194.0 × 106 events) while the lowest levels were found in SC rs753482AC+CC (70.9 ± 45.0 × 106 events). IIT did not decrease the cumulative incidence of restenosis/amputation/SCA/death in DMT2 and CLI patients. These patients correspond to a class of fragile subjects at high risk of cardiovascular events, and new predictors of restenosis should be contemplated, such as of eNOS polymorphism, (rs753482-A>C SNP) and circulating endothelial progenitor cells.

Keywords

Intensified insulin therapy Type 2 diabetes Critical limb ischemia eNOS polymorphism Endothelial progenitor cells Restenosis Amputation 

Supplementary material

592_2012_426_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 69 kb)

References

  1. 1.
    Ness J, Aronow WS, Ahn C (2000) Risk factors for symptomatic peripheral arterial disease in older persons in an academic hospital-based geriatrics practice. J Am Geriatr Soc 48:312–314PubMedGoogle Scholar
  2. 2.
    Soder HK, Manninen HJ, Jaakkola P et al (2000) Prospective trial of infrapopliteal artery balloon angioplasty for critical limb ischemia: angiographic and clinical results. J Vasc Interv Radiol 11:1021–1031PubMedCrossRefGoogle Scholar
  3. 3.
    Dorros G, Jaff MR, Dorros AM, Mathiak LM, He T (2001) Tibioperoneal (outflow lesion) angioplasty can be used as primary treatment in 235 patients with critical limb ischemia: 5 years follow-up. Circulation 104:2057–2062PubMedCrossRefGoogle Scholar
  4. 4.
    Aronow WS (2005) Management of peripheral arterial disease. Cardiol Rev 13:61–68PubMedCrossRefGoogle Scholar
  5. 5.
    Boyko EJ (1996) Increased mortality associated with diabetic foot ulcer. Diabetes Med 13:967–972CrossRefGoogle Scholar
  6. 6.
    Sarwar N, Gao P, Seshasai SR et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative metaanalysis of 102 prospective studies. Lancet 375:2215–2222PubMedCrossRefGoogle Scholar
  7. 7.
    Seshasai SR, Kaptoge S, Thompson A et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841PubMedCrossRefGoogle Scholar
  8. 8.
    Uchmanowicz I, Loboz-Grudzien K, Jankowska-Polanska B, Sokalski L (2011) Influence of diabetes on health-related quality of life results in patients with acute coronary syndrome treated with coronary angioplasty. Acta Diabetol. Mar 27 [Epub ahead of print]. PubMed PMID: 21442428Google Scholar
  9. 9.
    Gui MH, Li X, Lu ZQ, Gao X. (2012) Fasting plasma glucose correlates with angiographic coronary artery disease prevalence and severity in Chinese patients without known diabetes. Acta Diabetol. Jun 10 [Epub ahead of print]. PubMed PMID: 22684266Google Scholar
  10. 10.
    Lazzeri C, Valente S, Chiostri M et al (2011) The prognostic role of in-hospital peak glycemia in stemi patients with and withoutdiabetes. Acta Diabetol. Oct 19 [Epub ahead of print]. PubMed PMID:22008949Google Scholar
  11. 11.
    Lazzeri C, Valente S, Chiostri M, et al (2011) The glucose dysmetabolism in the acute phase of non-diabetic ST-elevation myocardial infarction: from insulin resistance to hyperglycemia. Acta Diabetol. Oct 9. [Epub ahead of print] PubMed PMID: 21984048Google Scholar
  12. 12.
    Monti LD, Barlassina C, Citterio L et al (2003) Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome. Diabetes 52:1270–1275PubMedCrossRefGoogle Scholar
  13. 13.
    Galluccio E, Piatti PM, Citterio L et al (2008) Hyperinsulinemia and impaired leptin-adiponectin ratio associate with endothelial nitric oxide synthase polymorphisms in subjects with in-stent restenosis. Am J Physiol Endocrinol Metab 294:E978–E986PubMedCrossRefGoogle Scholar
  14. 14.
    Aicher A, Heeschen C, Mildner-Rihm C et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376PubMedCrossRefGoogle Scholar
  15. 15.
    Yu J, deMuinck ED, Zhuang Z, Drinane M et al (2005) Endothelial nitric oxide synthase is critical for ischemic remodelling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA 102:10999–11004PubMedCrossRefGoogle Scholar
  16. 16.
    Murohara T, Asahara T, Silver M et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578PubMedCrossRefGoogle Scholar
  17. 17.
    Hamed S, Benjamin B, Abassi Z, Aharon A, Deeb Daoud D, Roguinand A (2010) Hyperglycemia and Oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 126:166–174PubMedCrossRefGoogle Scholar
  18. 18.
    Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg SV, Fadini GP (2011) Endothelial dysfunction in diabetes. The role of reparatory mechanisms. Diabetes Care 34(Suppl. 2):S285–S290PubMedCrossRefGoogle Scholar
  19. 19.
    Chen M-C, Sheu J-J, Wang P-W et al (2009) Complications impaired endothelial progenitor cell function in Type 2 diabetic patients with or without critical leg ischemia: implication for impaired neovascularization in diabetes. Diabetes Med 26:134–141CrossRefGoogle Scholar
  20. 20.
    Fadini GP, Miorin M, Facco M et al (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457PubMedCrossRefGoogle Scholar
  21. 21.
    Grollman J, Levin DC, Bettmann MA, et al (2000) Recurrent symptoms following lower extremity angioplasty: claudication and threatened limb. American College of Radiology. ACR Appropriateness Criteria. Radiology 215(Suppl.):95–99Google Scholar
  22. 22.
    Isner JM, Rosenfield K (1993) Redefining the treatment of peripheral artery disease: role of percutaneous revascularization. Circulation 88:1534–1557PubMedCrossRefGoogle Scholar
  23. 23.
    Corpus RA (2004) Optimal glycemic control is associated with a lower rate of target vessel revascularization in treated type II diabetic patients undergoing elective percutaneous coronary intervention. J Am Coll Cardiol 43:8–14PubMedCrossRefGoogle Scholar
  24. 24.
    Briguori C, Condorelli G, Airoldi F et al (2005) Impact of microvascular complications on outcome after coronary stent implantations in patients with diabetes. J Am Coll Cardiol 45:464–466PubMedCrossRefGoogle Scholar
  25. 25.
    Briguori C, Condorelli G, Airoldi F, Mikhail GW, Ricciardelli B, Colombo A (2004) Impact of glycaemic and lipid control on outcome after percutaneous coronary interventions in diabetic patients. Heart 90:1481–1482PubMedCrossRefGoogle Scholar
  26. 26.
    Exner M, Schillinger M, Minar E et al (2004) Interleukin-6 promoter genotype and restenosis after femoropopliteal balloon angioplasty: initial observations. Radiology 231:839–844PubMedCrossRefGoogle Scholar
  27. 27.
    Mlekusch W, Exner M, Schillinger et al (2004) E-selectin and restenosis after femoropopliteal angioplasty: prognostic impact of the Ser128Arg genotype and plasma levels. Thromb Haemost 91:171–179PubMedGoogle Scholar
  28. 28.
    Mongiardo A, Curcio A, Spaccarotella C, Parise S, Indolfi C (2004) Molecular mechanisms of restenosis after percutaneous peripheral angioplasty and approach to endovascular therapy. Curr Drug Targets Cardiovasc Hematol Disord 4:275–287CrossRefGoogle Scholar
  29. 29.
    Abizaid A (2001) Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: insights from the arterial revascularization therapy study (ARTS) trial. Circulation 104:533–538PubMedCrossRefGoogle Scholar
  30. 30.
    Romiti M, Albers M, Brochado-Neto FC, Durazzo AE, Pereira CA (2008) Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg 47:975–981PubMedCrossRefGoogle Scholar
  31. 31.
    Kosiborod M, Rathore SS, Inzucchi SE et al (2005) Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction. Circulation 111:3078–3086PubMedCrossRefGoogle Scholar
  32. 32.
    ACCORD Study Group (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559CrossRefGoogle Scholar
  33. 33.
    Gerstein HC, Miller ME, Genuth S et al (2011) ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med 364:818–828PubMedCrossRefGoogle Scholar
  34. 34.
    Song W, Ergul A (2006) Type-2 diabetes induced changes in vascular extracellular matrix gene expression: relation to vessel size. Cardiovasc Diabetol 5:3PubMedCrossRefGoogle Scholar
  35. 35.
    Harris AK, Hutchinson JR, Sachidanandam K et al (2005) Type 2 diabetes causes remodelling of cerebrovasculature via differential regulation of matrix metalloproteinases and collagen synthesis: role of endothelin-1. Diabetes 54:2638–2644PubMedCrossRefGoogle Scholar
  36. 36.
    Kawasumi M, Tanaka Y, Uchino H et al (2006) Strict glycemic control ameliorates the increase of carotid IMT in patients with type 2 diabetes. Endocrine J 53:45–50CrossRefGoogle Scholar
  37. 37.
    Fadini GP, de Kreutzenberg SV, Mariano V et al (2011) Optimized glycaemic control achieved with add-on basal insulin therapy improves indexes of endothelial damage and regeneration in type 2 diabetic patients with macroangiopathy: a randomized crossover trial comparing detemir versus glargine. Diabetes Obes Metab 13:718–725PubMedCrossRefGoogle Scholar
  38. 38.
    Chen YH, Lin SJ, Lin FY et al (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56:1559–1568PubMedCrossRefGoogle Scholar
  39. 39.
    Krankel N, Adams V, Linke A et al (2005) Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol 25:698–703PubMedCrossRefGoogle Scholar
  40. 40.
    Quyyumi AA (2004) Circulating endothelial progenitor cells as novel biological determinants of vascular function and risk. Can J Cardiol 20:44B–48BPubMedGoogle Scholar
  41. 41.
    Landmesser U, Engberding N, Bahlmann FH, Schaefer et al (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939PubMedCrossRefGoogle Scholar
  42. 42.
    Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786PubMedCrossRefGoogle Scholar
  43. 43.
    Ceriello A, Ihnat MA, Thorpe JE (2009) The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab 94:410–415PubMedCrossRefGoogle Scholar
  44. 44.
    Boussageon R, Saadatian-Elahi M, Lafont S et al (2011) Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343:1–12CrossRefGoogle Scholar
  45. 45.
    Phung OJ, Scholle JM, Talwar M, Coleman CI (2010) Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA 303:1410–1418PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pier Marco Piatti
    • 1
  • Enrico Marone
    • 2
  • Manuela Mantero
    • 3
  • Emanuela Setola
    • 1
  • Elena Galluccio
    • 4
  • Pietro Lucotti
    • 1
  • Ermal Shehaj
    • 1
  • Valentina Villa
    • 1
  • Francesca Perticone
    • 1
  • Massimo Venturini
    • 6
  • Alessio Palini
    • 7
  • Flavio Airoldi
    • 3
  • Ezio Faglia
    • 3
  • Alessandro Del Maschio
    • 6
  • Antonio Colombo
    • 5
  • Roberto Chiesa
    • 2
  • Emanuele Bosi
    • 1
    • 4
  • Lucilla D. Monti
    • 4
  1. 1.Cardio-Metabolism and Clinical Trials Unit, Department of Internal Medicine and Metabolic and Cardiovascular Science DivisionSan Raffaele Scientific InstituteMilanItaly
  2. 2.Vascular Surgery Division, Cardio-Thoraco-Vascular Department and Cardiovascular Science DivisionSan Raffaele Scientific InstituteMilanItaly
  3. 3.Cardiovascular DepartmentMultimedica IRCCSMilanItaly
  4. 4.Cardio-Diabetes and Core Lab Unit, Department of Internal Medicine and Metabolic and Cardiovascular Science DivisionSan Raffaele Scientific InstituteMilanItaly
  5. 5.Interventional Cardiology Division, Cardio-Thoraco-Vascular Department and Metabolic and Cardiovascular Science DivisionSan Raffaele Scientific InstituteMilanItaly
  6. 6.Department of Radiology and Center for Experimental ImagingSan Raffaele Scientific InstituteMilanItaly
  7. 7.Flow Cytometry Resource LaboratorySan Raffaele Scientific InstituteMilanItaly

Personalised recommendations