Acta Diabetologica

, Volume 50, Issue 3, pp 351–361

Systemic exposure to Pseudomonal bacteria: a potential link between type 1 diabetes and chronic inflammation

  • Lina Peräneva
  • Christopher L. Fogarty
  • Pirkko J. Pussinen
  • Carol Forsblom
  • Per-Henrik Groop
  • Markku Lehto
Original Article


Bacterial endotoxins have been associated with chronic inflammation and the development and progression of diabetic nephropathy. We hypothesized that subjects with high serum lipopolysaccharide activity also carry remains of bacterial DNA in their system. Serum-derived bacterial DNA clones were isolated and identified from 10 healthy controls and 14 patients with type 1 diabetes (T1D) using universal primers targeted to bacterial 16S rDNA. A total of 240 clones representing 35 unique bacterial species were isolated and identified. A significant proportion of the isolated bacteria could be assigned to our living environment. Proteobacteria was by far the most prevalent phylum among the samples. Notably, the patients had significantly higher frequencies of Stenotrophomonas maltophilia clones in their sera compared to the healthy controls. Real-time PCR analysis of S. maltophilia and Pseudomonas aeruginosa flagellin gene copy number in the human leukocyte DNA fraction revealed that the overall Pseudomonal bacterial load was higher in older patients with T1D. Serum IgA- and IgG-antibody levels against Pseudomonal bacteria Delftia acidovorans, P. aeruginosa, and S. maltophilia were also determined in 200 healthy controls and 200 patients with T1D. The patients had significantly higher serum levels of IgA antibodies against all three Pseudomonal bacteria. Additionally, the IgA antibodies against Pseudomonal bacteria correlated significantly with serum C-reactive protein. These findings indicate that recurrent or chronic Pseudomonal exposure may increase susceptibility to chronic inflammation in patients with T1D.


Chronic inflammation Lipopolysaccharide Pseudomonas Real-time PCR Type 1 diabetes 16S rDNA 

Supplementary material

592_2012_421_MOESM1_ESM.doc (112 kb)
Supplementary material 1 (DOC 111 kb)
592_2012_421_MOESM2_ESM.doc (112 kb)
Supplementary material 2 (DOC 112 kb)
592_2012_421_MOESM3_ESM.doc (124 kb)
Supplementary material 3 (DOC 124 kb)
592_2012_421_MOESM4_ESM.doc (42 kb)
Supplementary material 4 (DOC 41 kb)
592_2012_421_MOESM5_ESM.doc (42 kb)
Supplementary material 5 (DOC 42 kb)


  1. 1.
    Llaurado G, Gallart L, Tirado R et al (2012) Insulin resistance, low-grade inflammation and type 1 diabetes mellitus. Acta Diabetol 49:33–39PubMedCrossRefGoogle Scholar
  2. 2.
    Fadini BG, Marcuzzo G, Marescotti MC, Kreutzenberg S, Avogaro A (2012) Elevated white blood cell count is associated with prevalence and development of the metabolic syndrome and its components in the general population. Acta Diabetol [Epub ahead of print]Google Scholar
  3. 3.
    Fornoni A, Ijaz A, Tejada T, Lenz O (2008) Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 4:10–17PubMedCrossRefGoogle Scholar
  4. 4.
    Saraheimo M, Teppo A-M, Forsblom C et al (2003) Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia 46:1402–1407PubMedCrossRefGoogle Scholar
  5. 5.
    Muller LM, Gorter KJ, Hak E et al (2005) Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 41:281–288PubMedCrossRefGoogle Scholar
  6. 6.
    Benfield T, Jensen JS, Nordestgaard BG (2007) Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 50:549–554PubMedCrossRefGoogle Scholar
  7. 7.
    Gornik I, Gornik O, Gasparovic V (2007) HbA1c is outcome predictor in diabetic patients with sepsis. Diabetes Res Clin Pract 77:120–125PubMedCrossRefGoogle Scholar
  8. 8.
    Kornum JB, Thomsen RW, Riis A et al (2008) Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care 31:1541–1545PubMedCrossRefGoogle Scholar
  9. 9.
    Lassenius MI, Pietiläinen KH, Kaartinen K et al (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34:1809–1815PubMedCrossRefGoogle Scholar
  10. 10.
    Nymark M, Pussinen PJ, Tuomainen AM et al (2009) Serum lipopolysaccharide activity is associated with the progression of kidney disease in Finnish patients with type 1 diabetes. Diabetes Care 32:1689–1693PubMedCrossRefGoogle Scholar
  11. 11.
    Pussinen PJ, Havulinna AS, Lehto M et al (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34:392–397PubMedCrossRefGoogle Scholar
  12. 12.
    Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772PubMedCrossRefGoogle Scholar
  13. 13.
    Amar J, Burcelin R, Ruidavets JB et al (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87:1219–1223PubMedGoogle Scholar
  14. 14.
    Laugerette F, Vors C, Geloen A et al (2011) Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22:53–59PubMedCrossRefGoogle Scholar
  15. 15.
    McGuckin MA, Eri R, Simms LA et al (2009) Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 15:100–113PubMedCrossRefGoogle Scholar
  16. 16.
    Secondulfo M, Iafusco D, Carratu R et al (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 36:35–45PubMedCrossRefGoogle Scholar
  17. 17.
    Kotilainen P, Jalava J, Meurman O et al (1998) Diagnosis of meningococcal meningitis by broad-range bacterial PCR with cerebrospinal fluid. J Clin Microbiol 36:2205–2209PubMedGoogle Scholar
  18. 18.
    Pussinen PJ, Vilkuna-Rautiainen T, Alfthan G et al (2002) Multiserotype enzyme-linked immunosorbent assay as a diagnostic aid for periodontitis in large-scale studies. J Clin Microbiol 40:512–518PubMedCrossRefGoogle Scholar
  19. 19.
    Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  20. 20.
    Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  21. 21.
    Felsenstein J (2005) PHYLIP (phylogeny interference package) version 3.6. Distributed by the Author, Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  22. 22.
    Marques da Silva R, Da Caugant, Eribe ERK et al (2006) Bacterial diversity in aortic aneurysms determined by 16S ribosomal RNA gene analysis. J Vasc Surg 44:1055–1060PubMedCrossRefGoogle Scholar
  23. 23.
    Moriyama K, Ando C, Tashiro K et al (2008) Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiol Immunol 52:375–382PubMedCrossRefGoogle Scholar
  24. 24.
    Nelson DE, Van Der Pol B, Dong Q et al (2010) Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 5:E14116PubMedCrossRefGoogle Scholar
  25. 25.
    Renko J, Lepp PW, Oksala N et al (2008) Bacterial signatures in atherosclerotic lesions represent human commensals and pathogens. Atherosclerosis 201:192–197PubMedCrossRefGoogle Scholar
  26. 26.
    Siala M, Gdoura R, Fourati H et al (2009) Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis. Arthritis Res Ther 11:R102PubMedCrossRefGoogle Scholar
  27. 27.
    Mariat D, Firmesse O, Levenez F et al (2009) The firmicutes/bacteroides ratio of the human microbiota changes with age. BMC Microbiol 9:123PubMedCrossRefGoogle Scholar
  28. 28.
    Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 48:257–273PubMedCrossRefGoogle Scholar
  29. 29.
    Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequecing. Nature 464:59–65PubMedCrossRefGoogle Scholar
  30. 30.
    Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481PubMedCrossRefGoogle Scholar
  31. 31.
    Amar J, Chabo C, Waget A et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3:559–572PubMedCrossRefGoogle Scholar
  32. 32.
    Bahrani-Mougeot FK, Paster BJ, Coleman S et al (2008) Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol 46:2129–2132PubMedCrossRefGoogle Scholar
  33. 33.
    Geerts SO, Nys M, De Mol P et al (2002) Systemic release of endotoxins induced by gentle mastication: association with periodontitis severity. J Periodontol 73:73–78PubMedCrossRefGoogle Scholar
  34. 34.
    Lockhart PB, Brennan MT, Sasser HC et al (2008) Bacteremia associated with toothbrushing and dental extraction. Circulation 117:3118–3125PubMedCrossRefGoogle Scholar
  35. 35.
    Lucas VS, Gafan G, Dewhurst S, Roberts GJ (2008) Prevalence, intensity and nature of bacteraemia after toothbrushing. J Dent 36:481–487PubMedCrossRefGoogle Scholar
  36. 36.
    Knuuttila M, Suominen-Taipale L (2008) Periodontal status. In: Suominen-Taipale L, Nordblad A, Vehkalahti M, Aromaa A (eds) Oral health in the Finnish adult population. Publications of the National Public Health Institute B25, Helsinki, pp 49–53Google Scholar
  37. 37.
    Aspriello SD, Zizzi A, Tirabassi G et al (2011) Diabetes mellitus-associated periodontitis: differences between type 1 and type 2 diabetes mellitus. J Periodontal Res 46:164–169PubMedCrossRefGoogle Scholar
  38. 38.
    Choi YH, McKeown RE, Mayer-Davis EJ et al (2011) Association between periodontitis and impaired fasting glucose and diabetes. Diabetes Care 34:381–386PubMedCrossRefGoogle Scholar
  39. 39.
    Kshirsagar AV, Offenbacher S, Moss KL et al (2007) Antibodies to periodontal organisms are associated with decreased kidney function. The dental atherosclerosis risk in communities study. Blood Purif 25:125–132PubMedCrossRefGoogle Scholar
  40. 40.
    Shultis WA, Weil EJ, Looker HC et al (2007) Effect of periodontitis on overt nephropathy and end-stage renal disease in type 2 diabetes. Diabetes Care 30:306–311PubMedCrossRefGoogle Scholar
  41. 41.
    Larsen N, Vogensen FK, van den Berg FWJ et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085PubMedCrossRefGoogle Scholar
  42. 42.
    Qureshi A, Mooney L, Denton M, Kerr KG (2005) Stenotrophomonas maltophilia in salad. Emerg Infect Dis 11:1157–1158PubMedCrossRefGoogle Scholar
  43. 43.
    Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41PubMedCrossRefGoogle Scholar
  44. 44.
    Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treament of Pseudomonas aeruginosa infections. Drugs 67:351368CrossRefGoogle Scholar
  45. 45.
    Talon D, Bailly P, Leprat R et al (1994) Typing of hospital strains of Xanthomonas maltophilia by pulsed-field gel electrophoresis. J Hosp Infect 27:209–217PubMedCrossRefGoogle Scholar
  46. 46.
    Spicuzza L, Sciuto C, Vitaliti G et al (2009) Emerging pathogens in cystic fibrosis: ten years of follow-up in a cohort of patients. Eur J Clin Microbiol Infect Dis 28:191–195PubMedCrossRefGoogle Scholar
  47. 47.
    Conti S, dos Santos SSF, Koga-Ito CY, Jorge AOC (2009) Enterobacteriaceae and pseudomonadaceae on the dorsum of the human tongue. J Appl Oral Sci 17:375–380PubMedGoogle Scholar
  48. 48.
    Leung WK, Yau JYY, Cheung BPK et al (2003) Oral colonisation by aerobic and facultatively anaerobic gram-negative rods and yeast in Tibetans living in Lhasa. Arch Oral Biol 48:117–123PubMedCrossRefGoogle Scholar
  49. 49.
    Senpuku H, Sogame A, Inoshita E et al (2003) Systemic diseases in association with microbial species in oral biofilm from elderly requiring care. Gerontology 49:301–309PubMedCrossRefGoogle Scholar
  50. 50.
    Tada A, Senpuku H, Motozawa Y et al (2006) Association between commensal bacteria and opportunistic pathogens in the dental plaque of elderly individuals. Clin Microbiol Infect 12:776–781PubMedGoogle Scholar
  51. 51.
    Wendel M, Paul R, Heller AR (2007) Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med 33:25–35PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang H-Y, Sun S-H, Guo Y-J et al (2005) Tissue distribution of a plasmid DNA containing epitopes of foot-and-mouth disease virus in mice. Vaccine 23:5632–5640PubMedCrossRefGoogle Scholar
  53. 53.
    Mercer DK, Scott KP, Bruce-Johnson WA et al (1999) Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl Environ Microbiol 65:6–10PubMedGoogle Scholar
  54. 54.
    Tamkovich SN, Vlasov VV, Laktionov PP (2008) Circulating deoxyribonucleic acids in blood and their using in medical diagnostics. Mol Biol (Mosk) 42:12–23CrossRefGoogle Scholar
  55. 55.
    Koren O, Spor A, Felin J et al (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 108:4592–4598PubMedCrossRefGoogle Scholar
  56. 56.
    Ott SJ, Mokhtari NEE, Musfeldt M et al (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937PubMedCrossRefGoogle Scholar
  57. 57.
    Watt S, Aesch B, Lanotte P et al (2003) Viral and bacterial DNA in carotid atherosclerotic lesions. Eur J Clin Microbiol Infect Dis 22:99–105PubMedGoogle Scholar
  58. 58.
    Amar J, Serino M, Lange C et al (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54:3055–3061PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lina Peräneva
    • 1
    • 2
  • Christopher L. Fogarty
    • 1
    • 2
  • Pirkko J. Pussinen
    • 3
  • Carol Forsblom
    • 1
    • 2
  • Per-Henrik Groop
    • 1
    • 2
    • 4
  • Markku Lehto
    • 1
    • 2
  1. 1.Biomedicum HelsinkiFolkhälsan Institute of Genetics, Folkhälsan Research Center/FinnDianeHelsinkiFinland
  2. 2.Division of Nephrology, Department of MedicineHelsinki University Central HospitalHelsinkiFinland
  3. 3.Biomedicum Helsinki, Institute of DentistryUniversity of HelsinkiHelsinkiFinland
  4. 4.Baker IDI Heart and Diabetes InstituteMelbourneAustralia

Personalised recommendations