Acta Diabetologica

, Volume 50, Issue 3, pp 459–462

A SNP in G6PC2 predicts insulin secretion in type 1 diabetes

  • Srinath Sanda
  • Shan Wei
  • Tessa Rue
  • Heather Shilling
  • Carla Greenbaum
Short Communication

DOI: 10.1007/s00592-012-0389-y

Cite this article as:
Sanda, S., Wei, S., Rue, T. et al. Acta Diabetol (2013) 50: 459. doi:10.1007/s00592-012-0389-y

Abstract

We investigated whether single nucleotide polymorphisms in genes related to glucose metabolism correlate with insulin secretion in type 1 diabetes patients. A cohort of 49 type 1 diabetes patients underwent serial mixed meal tolerance tests to assess insulin secretion. Patients were genotyped for SNPs related to glucose metabolism: CDKAL1 rs7754840, G6PC2 rs560887, HHEX rs1111875, KCNJ11 rs5215. Recently diagnosed patients (<100 days) homozygous for the G allele of G6PC2 had higher area under the curve C-peptide on mixed meal tolerance tests compared to non-homozygous patients (344.8 ± 203.2 vs. 167.9 ± 131.5, p = 0.04). Other SNPs did not correlate with insulin secretion in the new onset period. In a longitudinal survival analysis, homozygosity for the minor allele (A) in G6PC2 predicted more rapid loss of insulin secretion over time. A SNP in the beta cell gene G6PC2 may correlate with preserved insulin secretion in type 1 diabetes.

Keywords

Translational research Genetics Longitudinal studies 

Abbreviations

SNP

Single nucleotide polymorphisms

MMTT

Mixed meal tolerance tests

AUC

Area under the curve

IRB

Institutional review board

PCR

Polymerase chain reaction

DNA

Deoxyribonucleic acid

GWAS

Genome-wide association studies

Supplementary material

592_2012_389_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 27 kb)

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Srinath Sanda
    • 1
  • Shan Wei
    • 1
  • Tessa Rue
    • 2
  • Heather Shilling
    • 1
  • Carla Greenbaum
    • 1
  1. 1.Benaroya Research InstituteSeattleUSA
  2. 2.Institute of Translational Health SciencesSeattleUSA

Personalised recommendations