Acta Diabetologica

, Volume 49, Issue 2, pp 159–164

Impaired diffusing capacity for carbon monoxide in children with type 1 diabetes: is this the first sign of long-term complications?

  • Andrea E. Scaramuzza
  • Marco Morelli
  • Maurizio Rizzi
  • Simona Borgonovo
  • Alessandra De Palma
  • Chiara Mameli
  • Elisa Giani
  • Silvia Beretta
  • Gian Vincenzo Zuccotti
Original Article


We assessed the presence of lung dysfunction in children with type 1 diabetes, evaluated as reduced diffusing capacity of the lung for carbon monoxide (DLCO), and its components: membrane diffusing capacity (DM) and pulmonary capillary blood volume (Vc). A total of 42 children, aged 15.6 ± 3.8 years, with type 1 diabetes for 8.3 ± 5.5 years, and 30 healthy age and sex-matched peers were recruited for the study. Lung volumes and spirometric dynamic parameters were assessed by plethysmography. Single-breath DLCO was measured according to international recommendation. DM and Vc volume were calculated. Lung volumes were significantly reduced in young patients with type 1 diabetes when compared to controls. Moreover, DLCO was reduced in patients compared to controls (78% ± 16% vs. 120% ± 1%, P = 0.0001). However, when differentiating DM and Vc compartments, we observed a significant impairment only about Vc (34 ± 20 ml vs. 88 ± 18 ml; P = 0.0001), while no difference was observed about DM compartment (23 ± 4 vs. 26 ± 3 ml/min/mmHg, P = 0.798). Whether this might be seen as the “first” sign of microangiopathic involvement in patients with type 1 diabetes has to be confirmed on larger groups but is still fascinating. Meanwhile, we suggest to screen DLCO in all patients with type 1 diabetes.


Adolescents Children Lung diffusion Lung function Microangiopathic complications Type 1 diabetes 



Body mass index


Diffusing capacity of the lung for carbon monoxide


Membrane diffusing capacity


Forced expiratory volume in 1 s


Forced vital capacity


Glycated hemoglobin


Carbon monoxide transfer coefficient


Residual volume


Total lung capacity


Vital capacity


Pulmonary capillary blood volume


  1. 1.
    Spiro RG (1976) Search for a biochemical basis of diabetic microangiopathy. Diabetologia 12:1–14PubMedCrossRefGoogle Scholar
  2. 2.
    Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRefGoogle Scholar
  3. 3.
    Sandler M (1990) Is the lung a target organ in diabetes mellitus? Arch Intern Med 150:1385–1388PubMedCrossRefGoogle Scholar
  4. 4.
    Primhak RA, Whincup G, Tsanakas JN, Milner RD (1987) Reduced vital capacity in insulin-dependent diabetes. Diabetes 36:324–326PubMedCrossRefGoogle Scholar
  5. 5.
    Buckingham B, Perejda AJ, Sandborg C, Kershnar AK, Uitto J (1986) Skin, joint, and pulmonary changes in type I diabetes mellitus. Am J Dis Child 140:420–423PubMedGoogle Scholar
  6. 6.
    Verrotti A, Verini M, Chiarelli F, Verdesca V, Misticoni G, Morgese G (1993) Pulmonary function in diabetic children with and without persistent microalbuminuria. Diabetes Res Clin Pract 21:171–176PubMedCrossRefGoogle Scholar
  7. 7.
    van Gent R, Brackel HJ, de Vroede M, van der Ent CK (2002) Lung function abnormalities in children with type I diabetes. Respir Med 96:976–978PubMedCrossRefGoogle Scholar
  8. 8.
    Villa MP, Montesano M, Barreto M, Pagani J, Stegagno M, Multari G, Ronchetti R (2004) Diffusing capacity for carbon monoxide in children with type 1 diabetes. Diabetologia 47:1931–1935PubMedCrossRefGoogle Scholar
  9. 9.
    Cazzato S, Bernardi F, Salardi S, Tassinari D, Corsini I, Ragni L, Cicognani A, Cacciari E (2004) Lung function in children with diabetes mellitus. Pediatr Pulmonol 37:17–23PubMedCrossRefGoogle Scholar
  10. 10.
    Lucini D, Zuccotti G, Malacarne M, Scaramuzza A, Riboni S, Palombo C, Pagani M (2009) Early progression of the autonomic dysfunction observed in pediatric type 1 diabetes mellitus. Hypertension 54:987–994Google Scholar
  11. 11.
    Lorini R, d’Annunzio G, Vitali L, Scaramuzza A, Bacchella L, Zonta LA (1998) Normal values of overnight albumin excretion rate in a sample of healthy Italian children and adolescents. J Pediatr Endocrinol Metab 11:639–643PubMedGoogle Scholar
  12. 12.
    Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J 26:319–338PubMedCrossRefGoogle Scholar
  13. 13.
    Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G (2005) Standardisation of the measurements of lung volumes. Eur Respir J 26:511–522PubMedCrossRefGoogle Scholar
  14. 14.
    Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R, Wanger J (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26:720–735PubMedCrossRefGoogle Scholar
  15. 15.
    Rouhton FJW, Foster RE (1957) Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the capillaries. J Appl Physiol 11:277–289Google Scholar
  16. 16.
    Rosenthal M, Bain SH, Cramer D, Helms P, Denison D, Bush A, Warner JO (1993) Lung function in white children aged 4 to 19 years: I. Spirometry. Thorax 48:794–802PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenthal M, Cramer D, Bain SH, Denison D, Bush A, Warner JO (1993) Lung function in white children aged 4 to 19 years: II. Single breath analysis and plethysmography. Thorax 48:803–808PubMedCrossRefGoogle Scholar
  18. 18.
    van den Boost B, Gosker HR, Zeegers MP, Schols AMWJ (2010) Pulmonary function in diabetes: a metaanalysis. Chest 138:393–406CrossRefGoogle Scholar
  19. 19.
    Sandler M, Bunn AE, Stewart RI (1987) Cross-section study of pulmonary function in patients with insulin-dependent diabetes mellitus. Am Rev Respir Dis 135:223–229Google Scholar
  20. 20.
    Pitocco D, Santangeli P, Fuso L, Zaccardi F, Longobardi A, Infusino F, Incalzi RA, Lanza GA, Crea F, Ghirlanda G (2008) Association between reduced pulmonary diffusing capacity and cardiac autonomic dysfunction in Type 1 diabetes. Diabet Med 25:1366–1368PubMedCrossRefGoogle Scholar
  21. 21.
    Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu WH et al (2010) The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol 47(Suppl 1):71–76PubMedCrossRefGoogle Scholar
  22. 22.
    Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Acta Diabetol 47:1–4PubMedCrossRefGoogle Scholar
  23. 23.
    Greco D, Gambina F, Maggio F (2009) Ophthalmoplegia in diabetes mellitus: a retrospective study. Acta Diabetol 46:23–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andrea E. Scaramuzza
    • 1
    • 3
  • Marco Morelli
    • 1
  • Maurizio Rizzi
    • 2
  • Simona Borgonovo
    • 1
  • Alessandra De Palma
    • 1
  • Chiara Mameli
    • 1
  • Elisa Giani
    • 1
  • Silvia Beretta
    • 1
  • Gian Vincenzo Zuccotti
    • 1
  1. 1.Department of Paediatrics, “Luigi Sacco Hospital”University of MilanoMilanItaly
  2. 2.Respiratory Medicine, Luigi Sacco HospitalUniversity of MilanoMilanItaly
  3. 3.Department of Pediatrics, “Ospedale Luigi Sacco”University of MilanoMilanItaly

Personalised recommendations