Acta Diabetologica

, Volume 48, Issue 1, pp 1–9

The IGF system

Review Article

Abstract

The insulin-like growth factor (IGF) system plays essential role in the regulation of cell growth, proliferation and survival and affects nearly every organ system in the body. IGF-I, which has a high structural similarity to insulin, exerts growth-promoting effects, influences glucose metabolism and has neuroprotective and cardioprotective effects, partly because of its cell-proliferative and antiapoptotic properties. Aberrations in the IGF system may associate with various pathological conditions, including cancer. Insulin and its synthetic analogs are known to possess IGF-IR binding affinity, and concern has been raised about their mitogenic potential in humans. The present review summarizes the main aspects of the IGF system biology and the interactions among IGF-I, insulin, insulin analogs and their receptors.

Keywords

IGF system Cell proliferation Insulin analogs 

References

  1. 1.
    Le Roith D (2003) The insulin-like growth factor system. Exp Diabesity Res 4(4):205–212. doi:9DM2KUX7VXW0N7H6[pii]10.1155/EDR.2003.205 PubMedGoogle Scholar
  2. 2.
    Federici M, Porzio O, Zucaro L, Fusco A, Borboni P, Lauro D, Sesti G (1997) Distribution of insulin/insulin-like growth factor-i hybrid receptors in human tissues. Mol Cell Endocrinol 129(2):121–126. doi:S0303-7207(97)04050-1[pii] PubMedGoogle Scholar
  3. 3.
    Salmon WD Jr, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49(6):825–836PubMedGoogle Scholar
  4. 4.
    Daughaday WH, Hall K, Raben MS, Salmon WD Jr, van den Brande JL, van Wyk JJ (1972) Somatomedin: proposed designation for sulphation factor. Nature 235(5333):107PubMedGoogle Scholar
  5. 5.
    Froesch ER, Buergi H, Ramseier EB, Bally P, Labhart A (1963) Antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. An insulin assay with adipose tissue of increased precision and specificity. J Clin Invest 42:1816–1834. doi:10.1172/JCI104866 PubMedGoogle Scholar
  6. 6.
    Blundell TL, Bedarkar S, Rinderknecht E, Humbel RE (1978) Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc Natl Acad Sci USA 75(1):180–184PubMedGoogle Scholar
  7. 7.
    Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor i and its structural homology with proinsulin. J Biol Chem 253(8):2769–2776PubMedGoogle Scholar
  8. 8.
    Klapper DG, Svoboda ME, Van Wyk JJ (1983) Sequence analysis of somatomedin-c: confirmation of identity with insulin-like growth factor i. Endocrinology 112(6):2215–2217PubMedGoogle Scholar
  9. 9.
    Daughaday WH, Hall K, Salmon WD Jr, Van den Brande JL, Van Wyk JJ (1987) On the nomenclature of the somatomedins and insulin-like growth factors. J Clin Endocrinol Metab 65(5):1075–1076PubMedGoogle Scholar
  10. 10.
    Clemmons DR (2006) Involvement of insulin-like growth factor-i in the control of glucose homeostasis. Curr Opin Pharmacol 6(6):620–625. doi:S1471-4892(06)00167-6[pii]10.1016/j.coph.2006.08.006 PubMedGoogle Scholar
  11. 11.
    Kaplan SA, Cohen P (2007) The somatomedin hypothesis 2007: 50 years later. J Clin Endocrinol Metab 92(12):4529–4535. doi:jc.2007-0526[pii]10.1210/jc.2007-0526 PubMedGoogle Scholar
  12. 12.
    Brissenden JE, Ullrich A, Francke U (1984) Human chromosomal mapping of genes for insulin-like growth factors i and ii and epidermal growth factor. Nature 310(5980):781–784PubMedGoogle Scholar
  13. 13.
    Tricoli JV, Rall LB, Scott J, Bell GI, Shows TB (1984) Localization of insulin-like growth factor genes to human chromosomes 11 and 12. Nature 310(5980):784–786PubMedGoogle Scholar
  14. 14.
    Rotwein P, Pollock KM, Didier DK, Krivi GG (1986) Organization and sequence of the human insulin-like growth factor i gene. Alternative RNA processing produces two insulin-like growth factor i precursor peptides. J Biol Chem 261(11):4828–4832PubMedGoogle Scholar
  15. 15.
    Smith PJ, Spurrell EL, Coakley J, Hinds CJ, Ross RJ, Krainer AR, Chew SL (2002) An exonic splicing enhancer in human igf-i pre-mrna mediates recognition of alternative exon 5 by the serine-arginine protein splicing factor-2/alternative splicing factor. Endocrinology 143(1):146–154PubMedGoogle Scholar
  16. 16.
    Sussenbach JS, Steenbergh PH, Holthuizen P (1992) Structure and expression of the human insulin-like growth factor genes. Growth Regul 2(1):1–9PubMedGoogle Scholar
  17. 17.
    Li CH, Yamashiro D, Gospodarowicz D, Kaplan SL, Van Vliet G (1983) Total synthesis of insulin-like growth factor i (somatomedin c). Proc Natl Acad Sci USA 80(8):2216–2220PubMedGoogle Scholar
  18. 18.
    Blundell TL, Bedarkar S, Humbel RE (1983) Tertiary structures, receptor binding, and antigenicity of insulin like growth factors. Fed Proc 42(9):2592–2597PubMedGoogle Scholar
  19. 19.
    Clemmons DR (1997) Insulin-like growth factor binding proteins and their role in controlling igf actions. Cytokine Growth Factor Rev 8(1):45–62. doi:S1359610196000536[pii] PubMedGoogle Scholar
  20. 20.
    Baxter RC, Martin JL (1989) Binding proteins for the insulin-like growth factors: structure, regulation and function. Prog Growth Factor Res 1(1):49–68PubMedGoogle Scholar
  21. 21.
    Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23(6):824–854PubMedGoogle Scholar
  22. 22.
    Rapp R, Deger A, Blum W, Koch R, Weber U (1988) Characterization of the protein which binds insulin-like growth factor in human serum. Eur J Biochem 172(2):421–425PubMedGoogle Scholar
  23. 23.
    Le Roith D, Bondy C, Yakar S, Liu JL, Butler A (2001) The somatomedin hypothesis: 2001. Endocr Rev 22(1):53–74PubMedGoogle Scholar
  24. 24.
    Kim HS, Ingermann AR, Tsubaki J, Twigg SM, Walker GE, Oh Y (2004) Insulin-like growth factor-binding protein 3 induces caspase-dependent apoptosis through a death receptor-mediated pathway in mcf-7 human breast cancer cells. Cancer Res 64(6):2229–2237PubMedGoogle Scholar
  25. 25.
    Perks CM, Newcomb PV, Norman MR, Holly JM (1999) Effect of insulin-like growth factor binding protein-1 on integrin signalling and the induction of apoptosis in human breast cancer cells. J Mol Endocrinol 22(2):141–150PubMedGoogle Scholar
  26. 26.
    Granata R, Trovato L, Garbarino G, Taliano M, Ponti R, Sala G, Ghidoni R, Ghigo E (2004) Dual effects of igfbp-3 on endothelial cell apoptosis and survival: involvement of the sphingolipid signaling pathways. FASEB J 18(12):1456–1458. doi:10.1096/fj.04-1618fje04-1618fje[pii] PubMedGoogle Scholar
  27. 27.
    Yamada PM, Lee KW (2009) Perspectives in mammalian igfbp-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 296(5):C954–C976. doi:00598.2008[pii]10.1152/ajpcell.00598.2008 PubMedGoogle Scholar
  28. 28.
    Clemmons DR (2009) Role of igf-i in skeletal muscle mass maintenance. Trends Endocrinol Metab 20(7):349–356. doi:S1043-2760(09)00090-3[pii]10.1016/j.tem.2009.04.002 PubMedGoogle Scholar
  29. 29.
    Heldin CH, Ostman A (1996) Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev 7(1):3–10. doi:1359610196000020[pii] PubMedGoogle Scholar
  30. 30.
    House PD, Weidemann MJ (1970) Characterization of an [125 i]-insulin binding plasma membrane fraction from rat liver. Biochem Biophys Res Commun 41(3):541–548. doi:0006-291X(70)90046-X[pii] PubMedGoogle Scholar
  31. 31.
    Freychet P, Roth J, Neville DM Jr (1971) Insulin receptors in the liver: specific binding of (125 i)insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci USA 68(8):1833–1837PubMedGoogle Scholar
  32. 32.
    Cuatrecasas P (1971) Insulin–receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci USA 68(6):1264–1268PubMedGoogle Scholar
  33. 33.
    Gammeltoft S, Gliemann J (1973) Binding and degradation of 125i-labelled insulin by isolated rat fat cells. Biochim Biophys Acta 320(1):16–32. doi:0304-4165(73)90161-X[pii] PubMedGoogle Scholar
  34. 34.
    Yip CC, Yeung CW, Moule ML (1980) Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations. Biochemistry 19(1):70–76PubMedGoogle Scholar
  35. 35.
    Massague J, Czech MP (1982) The subunit structures of two distinct receptors for insulin-like growth factors i and ii and their relationship to the insulin receptor. J Biol Chem 257(9):5038–5045PubMedGoogle Scholar
  36. 36.
    Shia MA, Pilch PF (1983) The beta subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry 22(4):717–721PubMedGoogle Scholar
  37. 37.
    Roth RA, Cassell DJ (1983) Insulin receptor: evidence that it is a protein kinase. Science 219(4582):299–301PubMedGoogle Scholar
  38. 38.
    Kasuga M, Fujita-Yamaguchi Y, Blithe DL, Kahn CR (1983) Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc Natl Acad Sci USA 80(8):2137–2141PubMedGoogle Scholar
  39. 39.
    Kasuga M, Fujita-Yamaguchi Y, Blithe DL, White MF, Kahn CR (1983) Characterization of the insulin receptor kinase purified from human placental membranes. J Biol Chem 258(18):10973–10980PubMedGoogle Scholar
  40. 40.
    Pashmforoush M, Chan SJ, Steiner DF (1996) Structure and expression of the insulin-like peptide receptor from amphioxus. Mol Endocrinol 10(7):857–866PubMedGoogle Scholar
  41. 41.
    Megyesi K, Kahn CR, Roth J, Neville DM Jr, Nissley SP, Humbel RE, Froesch ER (1975) The nsila-s receptor in liver plasma membranes. Characterization and comparison with the insulin receptor. J Biol Chem 250(23):8990–8996PubMedGoogle Scholar
  42. 42.
    Marshall RN, Underwood LE, Voina SJ, Foushee DB, Van Wyk JJ (1974) Characterization of the insulin and somatomedin-c receptors in human placental cell membranes. J Clin Endocrinol Metab 39(2):283–292PubMedGoogle Scholar
  43. 43.
    Bhaumick B, Bala RM, Hollenberg MD (1981) Somatomedin receptor of human placenta: solubilization, photolabeling, partial purification, and comparison with insulin receptor. Proc Natl Acad Sci USA 78(7):4279–4283PubMedGoogle Scholar
  44. 44.
    Chernausek SD, Jacobs S, Van Wyk JJ (1981) Structural similarities between human receptors for somatomedin c and insulin: analysis by affinity labeling. Biochemistry 20(26):7345–7350PubMedGoogle Scholar
  45. 45.
    Jacobs S, Kull FC Jr, Earp HS, Svoboda ME, Van Wyk JJ, Cuatrecasas P (1983) Somatomedin-c stimulates the phosphorylation of the beta-subunit of its own receptor. J Biol Chem 258(16):9581–9584PubMedGoogle Scholar
  46. 46.
    Rubin JB, Shia MA, Pilch PF (1983) Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor i. Nature 305(5933):438–440PubMedGoogle Scholar
  47. 47.
    Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E et al (1986) Insulin-like growth factor i receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5(10):2503–2512PubMedGoogle Scholar
  48. 48.
    Jacobs S, Kull FC Jr, Cuatrecasas P (1983) Monensin blocks the maturation of receptors for insulin and somatomedin c: identification of receptor precursors. Proc Natl Acad Sci USA 80(5):1228–1231PubMedGoogle Scholar
  49. 49.
    Steele-Perkins G, Turner J, Edman JC, Hari J, Pierce SB, Stover C, Rutter WJ, Roth RA (1988) Expression and characterization of a functional human insulin-like growth factor i receptor. J Biol Chem 263(23):11486–11492PubMedGoogle Scholar
  50. 50.
    Sasaki N, Rees-Jones RW, Zick Y, Nissley SP, Rechler MM (1985) Characterization of insulin-like growth factor i-stimulated tyrosine kinase activity associated with the beta-subunit of type i insulin-like growth factor receptors of rat liver cells. J Biol Chem 260(17):9793–9804PubMedGoogle Scholar
  51. 51.
    Soos MA, Siddle K (1989) Immunological relationships between receptors for insulin and insulin-like growth factor i. Evidence for structural heterogeneity of insulin-like growth factor i receptors involving hybrids with insulin receptors. Biochem J 263(2):553–563PubMedGoogle Scholar
  52. 52.
    Soos MA, Field CE, Siddle K (1993) Purified hybrid insulin/insulin-like growth factor-i receptors bind insulin-like growth factor-i, but not insulin, with high affinity. Biochem J 290(Pt 2):419–426PubMedGoogle Scholar
  53. 53.
    Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30(6):586–623. doi:er.2008-0047[pii]10.1210/er.2008-0047 PubMedGoogle Scholar
  54. 54.
    Hankins GR, De Souza AT, Bentley RC, Patel MR, Marks JR, Iglehart JD, Jirtle RL (1996) M6p/igf2 receptor: a candidate breast tumor suppressor gene. Oncogene 12(9):2003–2009PubMedGoogle Scholar
  55. 55.
    O’Gorman DB, Weiss J, Hettiaratchi A, Firth SM, Scott CD (2002) Insulin-like growth factor-ii/mannose 6-phosphate receptor overexpression reduces growth of choriocarcinoma cells in vitro and in vivo. Endocrinology 143(11):4287–4294PubMedGoogle Scholar
  56. 56.
    Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8(12):915–928. doi:nrc2536[pii]10.1038/nrc2536 PubMedGoogle Scholar
  57. 57.
    Shier P, Watt VM (1989) Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem 264(25):14605–14608PubMedGoogle Scholar
  58. 58.
    Zhang B, Roth RA (1992) The insulin receptor-related receptor. Tissue expression, ligand binding specificity, and signaling capabilities. J Biol Chem 267(26):18320–18328PubMedGoogle Scholar
  59. 59.
    Nakae J, Kido Y, Accili D (2001) Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 22(6):818–835PubMedGoogle Scholar
  60. 60.
    Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75(1):73–82. doi:0092-8674(93)90680-O[pii] PubMedGoogle Scholar
  61. 61.
    Hadsell DL (2004) Genetic manipulation of mammary gland development and lactation. Adv Exp Med Biol 554:229–251PubMedGoogle Scholar
  62. 62.
    Torres-Aleman I (2010) Toward a comprehensive neurobiology of igf-i. Dev Neurobiol 70(5):384–396. doi:10.1002/dneu.20778 PubMedGoogle Scholar
  63. 63.
    Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The igf-1/akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by akt. Dev Cell 2(6):831–837. doi:S1534580702001880[pii] PubMedGoogle Scholar
  64. 64.
    Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor i regulates brain amyloid-beta levels. Nat Med 8(12):1390–1397. doi:10.1038/nm793nm793[pii] PubMedGoogle Scholar
  65. 65.
    Aleman A, Verhaar HJ, De Haan EH, De Vries WR, Samson MM, Drent ML, Van der Veen EA, Koppeschaar HP (1999) Insulin-like growth factor-i and cognitive function in healthy older men. J Clin Endocrinol Metab 84(2):471–475PubMedGoogle Scholar
  66. 66.
    Llorens-Martin M, Torres-Aleman I, Trejo JL (2009) Mechanisms mediating brain plasticity: igf1 and adult hippocampal neurogenesis. Neuroscientist 15(2):134–148. doi:15/2/134[pii]10.1177/1073858408331371 PubMedGoogle Scholar
  67. 67.
    Li B, Setoguchi M, Wang X, Andreoli AM, Leri A, Malhotra A, Kajstura J, Anversa P (1999) Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ Res 84(9):1007–1019PubMedGoogle Scholar
  68. 68.
    Welch S, Plank D, Witt S, Glascock B, Schaefer E, Chimenti S, Andreoli AM, Limana F, Leri A, Kajstura J, Anversa P, Sussman MA (2002) Cardiac-specific igf-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice. Circ Res 90(6):641–648PubMedGoogle Scholar
  69. 69.
    Colao A (2008) The gh-igf-i axis and the cardiovascular system: clinical implications. Clin Endocrinol (Oxf) 69(3):347–358. doi:CEN3292[pii]10.1111/j.1365-2265.2008.03292.x Google Scholar
  70. 70.
    Suleiman MS, Singh RJ, Stewart CE (2007) Apoptosis and the cardiac action of insulin-like growth factor i. Pharmacol Ther 114(3):278–294. doi:S0163-7258(07)00049-6[pii]10.1016/j.pharmthera.2007.03.001 PubMedGoogle Scholar
  71. 71.
    Arnqvist HJ (2008) The role of igf-system in vascular insulin resistance. Horm Metab Res 40(9):588–592. doi:10.1055/s-0028-1082325 PubMedGoogle Scholar
  72. 72.
    Smith TJ (2010) Insulin-like growth factor-i regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 62(2):199–236. doi:pr.109.002469[pii]10.1124/pr.109.002469 PubMedGoogle Scholar
  73. 73.
    Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P (2010) Igf-1, oxidative stress and atheroprotection. Trends Endocrinol Metab 21(4):245–254. doi:S1043-2760(09)00214-8[pii]10.1016/j.tem.2009.12.005 PubMedGoogle Scholar
  74. 74.
    Sara VR, Hall K (1990) Insulin-like growth factors and their binding proteins. Physiol Rev 70(3):591–614PubMedGoogle Scholar
  75. 75.
    Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246(4930):603–608PubMedGoogle Scholar
  76. 76.
    Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518. doi:10.1038/nrc1387nrc1387[pii] PubMedGoogle Scholar
  77. 77.
    Werner H, Karnieli E, Rauscher FJ, LeRoith D (1996) Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor i receptor gene. Proc Natl Acad Sci USA 93(16):8318–8323PubMedGoogle Scholar
  78. 78.
    LeRoith D, Yakar S (2007) Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 3(3):302–310. doi:ncpendmet0427[pii]10.1038/ncpendmet0427 PubMedGoogle Scholar
  79. 79.
    Mauras N, Haymond MW (2005) Are the metabolic effects of gh and igf-i separable? Growth Horm IGF Res 15(1):19–27. doi:S1096-6374(04)00172-8[pii]10.1016/j.ghir.2004.12.003 PubMedGoogle Scholar
  80. 80.
    Yuen KC, Dunger DB (2007) Therapeutic aspects of growth hormone and insulin-like growth factor-i treatment on visceral fat and insulin sensitivity in adults. Diabetes Obes Metab 9(1):11–22. doi:DOM591[pii]10.1111/j.1463-1326.2006.00591.x PubMedGoogle Scholar
  81. 81.
    Camacho-Hubner C, Woods KA, Clark AJ, Savage MO (2002) Insulin-like growth factor (igf)-i gene deletion. Rev Endocr Metab Disord 3(4):357–361PubMedGoogle Scholar
  82. 82.
    Clemmons DR, Moses AC, McKay MJ, Sommer A, Rosen DM, Ruckle J (2000) The combination of insulin-like growth factor i and insulin-like growth factor-binding protein-3 reduces insulin requirements in insulin-dependent type 1 diabetes: evidence for in vivo biological activity. J Clin Endocrinol Metab 85(4):1518–1524PubMedGoogle Scholar
  83. 83.
    Clemmons DR, Moses AC, Sommer A, Jacobson W, Rogol AD, Sleevi MR, Allan G (2005) Rh/igf-i/rhigfbp-3 administration to patients with type 2 diabetes mellitus reduces insulin requirements while also lowering fasting glucose. Growth Horm IGF Res 15(4):265–274. doi:S1096-6374(05)00055-9[pii]10.1016/j.ghir.2005.05.002 PubMedGoogle Scholar
  84. 84.
    Cusi K, DeFronzo R (2000) Recombinant human insulin-like growth factor i treatment for 1 week improves metabolic control in type 2 diabetes by ameliorating hepatic and muscle insulin resistance. J Clin Endocrinol Metab 85(9):3077–3084PubMedGoogle Scholar
  85. 85.
    Saukkonen T, Shojaee-Moradie F, Williams RM, Amin R, Yuen KC, Watts A, Acerini CL, Umpleby AM, Dunger DB (2006) Effects of recombinant human igf-i/igf-binding protein-3 complex on glucose and glycerol metabolism in type 1 diabetes. Diabetes 55(8):2365–2370. doi:55/8/2365[pii]10.2337/db05-1646 PubMedGoogle Scholar
  86. 86.
    Henry RR, Abrams L, Nikoulina S, Ciaraldi TP (1995) Insulin action and glucose metabolism in nondiabetic control and niddm subjects. Comparison using human skeletal muscle cell cultures. Diabetes 44(8):936–946PubMedGoogle Scholar
  87. 87.
    Baudry A, Lamothe B, Bucchini D, Jami J, Montarras D, Pinset C, Joshi RL (2001) Igf-1 receptor as an alternative receptor for metabolic signaling in insulin receptor-deficient muscle cells. FEBS Lett 488(3):174–178. doi:S0014-5793(00)02435-2[pii] PubMedGoogle Scholar
  88. 88.
    Sakai K, Lowman HB, Clemmons DR (2002) Increases in free, unbound insulin-like growth factor i enhance insulin responsiveness in human hepatoma g2 cells in culture. J Biol Chem 277(16):13620–13627. doi:10.1074/jbc.M107771200M107771200[pii] PubMedGoogle Scholar
  89. 89.
    Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J (2009) The role of liver-derived insulin-like growth factor-i. Endocr Rev 30(5):494–535. doi:er.2009-0010[pii]10.1210/er.2009-0010 PubMedGoogle Scholar
  90. 90.
    DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor ii gene disrupted by targeting. Nature 345(6270):78–80. doi:10.1038/345078a0 PubMedGoogle Scholar
  91. 91.
    Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C (1993) Parental genomic imprinting of the human igf2 gene. Nat Genet 4(1):98–101. doi:10.1038/ng0593-98 PubMedGoogle Scholar
  92. 92.
    Ren H, Yin P, Duan C (2008) Igfbp-5 regulates muscle cell differentiation by binding to igf-ii and switching on the igf-ii auto-regulation loop. J Cell Biol 182(5):979–991. doi:jcb.200712110[pii]10.1083/jcb.200712110 PubMedGoogle Scholar
  93. 93.
    Reeve AE, Eccles MR, Wilkins RJ, Bell GI, Millow LJ (1985) Expression of insulin-like growth factor-ii transcripts in wilms’ tumour. Nature 317(6034):258–260PubMedGoogle Scholar
  94. 94.
    Lammers R, Gray A, Schlessinger J, Ullrich A (1989) Differential signalling potential of insulin- and igf-1-receptor cytoplasmic domains. EMBO J 8(5):1369–1375PubMedGoogle Scholar
  95. 95.
    Shymko RM, Dumont E, De Meyts P, Dumont JE (1999) Timing-dependence of insulin-receptor mitogenic versus metabolic signalling: a plausible model based on coincidence of hormone and effector binding. Biochem J 339(Pt 3):675–683PubMedGoogle Scholar
  96. 96.
    Louvi A, Accili D, Efstratiadis A (1997) Growth-promoting interaction of igf-ii with the insulin receptor during mouse embryonic development. Dev Biol 189(1):33–48. doi:S0012-1606(97)98666-8[pii]10.1006/dbio.1997.8666 PubMedGoogle Scholar
  97. 97.
    Mynarcik DC, Williams PF, Schaffer L, Yu GQ, Whittaker J (1997) Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding. J Biol Chem 272(30):18650–18655PubMedGoogle Scholar
  98. 98.
    Zelobowska K, Gumprecht J, Grzeszczak W (2009) Mitogenic potency of insulin glargine. Endokrynol Pol 60(1):34–39PubMedGoogle Scholar
  99. 99.
    Schwartz GP, Burke GT, Katsoyannis PG (1987) A superactive insulin: [b10-aspartic acid]insulin(human). Proc Natl Acad Sci USA 84(18):6408–6411PubMedGoogle Scholar
  100. 100.
    Bornfeldt KE, Gidlof RA, Wasteson A, Lake M, Skottner A, Arnqvist HJ (1991) Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities. Diabetologia 34(5):307–313PubMedGoogle Scholar
  101. 101.
    Drejer K (1992) The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes Metab Rev 8(3):259–285PubMedGoogle Scholar
  102. 102.
    Milazzo G, Sciacca L, Papa V, Goldfine ID, Vigneri R (1997) Aspb10 insulin induction of increased mitogenic responses and phenotypic changes in human breast epithelial cells: evidence for enhanced interactions with the insulin-like growth factor-i receptor. Mol Carcinog 18(1):19–25. doi:10.1002/(SICI)1098-2744(199701)18:1<19:AID-MC3>3.0.CO;2-M[pii] PubMedGoogle Scholar
  103. 103.
    Hansen BF, Danielsen GM, Drejer K, Sorensen AR, Wiberg FC, Klein HH, Lundemose AG (1996) Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem J 315(Pt 1):271–279PubMedGoogle Scholar
  104. 104.
    Pollak M, Russell-Jones D (2010) Insulin analogues and cancer risk: cause for concern or cause celebre? Int J Clin Pract 64(5):628–636. doi:IJCP2354[pii]10.1111/j.1742-1241.2010.02354.x PubMedGoogle Scholar
  105. 105.
    Bahr M, Kolter T, Seipke G, Eckel J (1997) Growth promoting and metabolic activity of the human insulin analogue [glya21, argb31, argb32]insulin (hoe 901) in muscle cells. Eur J Pharmacol 320(2–3):259–265. doi:S0014-2999(96)00903-X[pii] PubMedGoogle Scholar
  106. 106.
    Chisalita SI, Arnqvist HJ (2004) Insulin-like growth factor i receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 286(6):E896–E901. doi:10.1152/ajpendo.00327.200300327.2003[pii] PubMedGoogle Scholar
  107. 107.
    Ciaraldi TP, Carter L, Seipke G, Mudaliar S, Henry RR (2001) Effects of the long-acting insulin analog insulin glargine on cultured human skeletal muscle cells: comparisons to insulin and igf-i. J Clin Endocrinol Metab 86(12):5838–5847PubMedGoogle Scholar
  108. 108.
    Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, Trub T (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49(6):999–1005PubMedGoogle Scholar
  109. 109.
    Shukla A, Grisouard J, Ehemann V, Hermani A, Enzmann H, Mayer D (2009) Analysis of signaling pathways related to cell proliferation stimulated by insulin analogs in human mammary epithelial cell lines. Endocr Relat Cancer 16(2):429–441. doi:ERC-08-0240[pii]10.1677/ERC-08-0240 PubMedGoogle Scholar
  110. 110.
    Weinstein D, Simon M, Yehezkel E, Laron Z, Werner H (2009) Insulin analogues display igf-i-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev 25(1):41–49. doi:10.1002/dmrr.912 PubMedGoogle Scholar
  111. 111.
    Mayer D, Chantelau E (2010) Treatment with insulin glargine (lantus) increases the proliferative potency of the serum of patients with type-1 diabetes: a pilot study on mcf-7 breast cancer cells. Arch Physiol Biochem 116(2):73–78. doi:10.3109/13813451003631439 PubMedGoogle Scholar
  112. 112.
    Berti L, Kellerer M, Bossenmaier B, Seffer E, Seipke G, Haring HU (1998) The long acting human insulin analog hoe 901: characteristics of insulin signalling in comparison to asp(b10) and regular insulin. Horm Metab Res 30(3):123–129. doi:10.1055/s-2007-978849 PubMedGoogle Scholar
  113. 113.
    Staiger K, Staiger H, Schweitzer MA, Metzinger E, Balletshofer B, Haring HU, Kellerer M (2005) Insulin and its analogue glargine do not affect viability and proliferation of human coronary artery endothelial and smooth muscle cells. Diabetologia 48(9):1898–1905. doi:10.1007/s00125-005-1874-4 PubMedGoogle Scholar
  114. 114.
    Erbel S, Reers C, Eckstein VW, Kleeff J, Buchler MW, Nawroth PP, Ritzel RA (2008) Proliferation of colo-357 pancreatic carcinoma cells and survival of patients with pancreatic carcinoma are not altered by insulin glargine. Diabetes Care 31(6):1105–1111. doi:dc07-2015[pii]10.2337/dc07-2015 PubMedGoogle Scholar
  115. 115.
    Staiger K, Hennige AM, Staiger H, Haring HU, Kellerer M (2007) Comparison of the mitogenic potency of regular human insulin and its analogue glargine in normal and transformed human breast epithelial cells. Horm Metab Res 39(1):65–67. doi:10.1055/s-2007-957352 PubMedGoogle Scholar
  116. 116.
    Liefvendahl E, Arnqvist HJ (2008) Mitogenic effect of the insulin analogue glargine in malignant cells in comparison with insulin and igf-i. Horm Metab Res 40(6):369–374. doi:10.1055/s-2008-1062739 PubMedGoogle Scholar
  117. 117.
    Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G (2002) Evaluation of the carcinogenic potential of insulin glargine (lantus) in rats and mice. Int J Toxicol 21(3):171–179. doi:10.1080/10915810290096306 PubMedGoogle Scholar
  118. 118.
    Eckardt K, May C, Koenen M, Eckel J (2007) Igf-1 receptor signalling determines the mitogenic potency of insulin analogues in human smooth muscle cells and fibroblasts. Diabetologia 50(12):2534–2543. doi:10.1007/s00125-007-0815-9 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marta Annunziata
    • 1
  • Riccarda Granata
    • 1
  • Ezio Ghigo
    • 1
  1. 1.Division of Endocrinology, Diabetology and Metabolism, Department of Internal MedicineUniversity of TurinTurinItaly

Personalised recommendations