Acta Diabetologica

, Volume 47, Issue 4, pp 279–293 | Cite as

Encephalopathies: the emerging diabetic complications

  • Anders A. F. SimaEmail author
Review Article


Diabetic encephalopathies are now accepted complications of diabetes. They appear to differ in type 1 and type 2 diabetes as to underlying mechanisms and the nature of resulting cognitive deficits. The increased incidence of Alzheimer’s disease in type 2 diabetes is associated with insulin resistance, hyperinsulinemia and hyperglycemia, and commonly accompanying attributes such as hypercholesterolemia, hypertension and obesity. The relevance of these disorders as to the emergence of dementia and Alzheimer’s disease is discussed based on epidemiological studies. The pathobiology of accumulation of β-amyloid and tau the hallmarks of Alzheimer’s disease are discussed based on experimental data. Type 1 diabetic encephalopathy is likely to increase as a result of the global increase in the incidence of type 1 diabetes and its occurrence in increasingly younger patients. Alzheimer-like changes and dementia are not prominently increased in type 1 diabetes. Instead, the type 1 diabetic encephalopathy involves learning abilities, intelligence development and memory retrieval resulting in impaired school and professional performances. The major underlying component here appears to be insulin deficiency with downstream effects on the expression of neurotrophic factors, neurotransmitters, oxidative and apoptotic stressors resulting in defects in neuronal integrity, connectivity and loss commonly occurring in the still developing brain. Recent experimental data emphasize the role of impaired central insulin action and provide information as to potential therapies. Therefore, the underlying mechanisms resulting in diabetic encephalopathies are complex and appear to differ between the two types of diabetes. Major headway has been made in our understanding of their pathobiology; however, many questions remain to be clarified. In view of the increasing incidence of both type 1 and type 2 diabetes, intensified investigations are called for to expand our understanding of these complications and to find therapeutic means by which these disastrous consequences can be prevented and modified.


Type 2 diabetes Insulin resistance Alzheimer’s disease Type 1 diabetes Insulin deficiency Encephalopathy 


  1. 1.
    Biessels GJ, Luchsinger JA (eds) (2009) Diabetes and the brain. Humana Press, New YorkGoogle Scholar
  2. 2.
    Miles WR, Root HF (1922) Psychologic tests applied in diabetic patients. Arch Intern Med 30:767–777Google Scholar
  3. 3.
    Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 58:1937–1941Google Scholar
  4. 4.
    Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer’s disease and decline in cognitive function. Arch Neurol 61:661–666PubMedCrossRefGoogle Scholar
  5. 5.
    Xu WL, Qui CX, Wahlin A, Winblad B, Fratiglioni L (2004) Diabetes mellitus and risk of dementia in the Kungshohman project: a 6 year follow-up. Neurology 63:1181–1186PubMedGoogle Scholar
  6. 6.
    Kumari M, Marmot M (2005) Diabetes and cognitive function in a middle-aged cohort: findings from the Whitehall II study. Neurology 65:1597–1603PubMedCrossRefGoogle Scholar
  7. 7.
    Worrall G, Moulton E, Briffett E (1993) Effect of type II diabetes mellitus on cognitive function. J Fam Pract 36:639–643PubMedGoogle Scholar
  8. 8.
    Fontbonne A, Berr C, Ducimetière P, Alpérovitch A (2001) Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Diabetes Care 24:366–370PubMedCrossRefGoogle Scholar
  9. 9.
    Nguyen HT, Black SA, Roy LA, Espino DV, Markides KS (2002) Predictors of decline in MMSE scores among older Mexican Americans. J Gerontol A Biol Sci Med Sci 57:M181–M185PubMedGoogle Scholar
  10. 10.
    van Harten B, Oosterman J, Muslimovic D, van Loon BJ, Scheltens P, Weinstein HC (2007) Cognitive impairment of MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing 36:164–170PubMedCrossRefGoogle Scholar
  11. 11.
    Hiltunen LA, Keinänen-Kiukaanniemi SM, Läärä EM (2001) Glucose tolerance and cognitive impairment in an elderly population. Public Health 115:197–200PubMedCrossRefGoogle Scholar
  12. 12.
    Wu JH, Haan MN, Liang J, Ghosh D, Gonzalez HM, Herman WH (2003) Impact of diabetes on cognitive function among older Latinos: a population-based cohort study. J Clin Epidemiol 56:686–693PubMedCrossRefGoogle Scholar
  13. 13.
    Hassing LB, Grant MD, Hofer SM, Pedersen NL, Nilsson SE, Berg S, McClearn G, Johansson B (2004) Type 2 diabetes mellitus contributes to cognitive decline in old age: a longitudinal population-based study. J Int Neuropsychol Soc 10:599–607PubMedCrossRefGoogle Scholar
  14. 14.
    Ryan CM, Geckle MO (2000) Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care 23:1486–1493PubMedCrossRefGoogle Scholar
  15. 15.
    Abbatecola AM, Paolisso G, Lamponi M, Bandinelli S, Lauretani F, Launer L, Ferrucci L (2004) Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc 52:1713–1718PubMedCrossRefGoogle Scholar
  16. 16.
    Dik MG, Jonker C, Comijs HC, Deeg DJ, Kok A, Yaffe K, Penninx BW (2007) Contributions of metabolic syndrome components to cognition in older individuals. Diabetes Care 30:2655–2660PubMedCrossRefGoogle Scholar
  17. 17.
    Komulainen P, Lakka TA, Kivipelto M, Hassinen M, Helkala EL, Haapala I, Nissinen A, Rauramaa R (2007) Metabolic syndrome and cognitive function: a population-based follow-up study in elderly women. Dement Geriatr Cogn Disord 23:29–34PubMedCrossRefGoogle Scholar
  18. 18.
    Convit A, Wolf OT, Tarshish C, de Leon MJ (2003) Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA 100:2019–2022PubMedCrossRefGoogle Scholar
  19. 19.
    Pinkston JB, Alekseeva N, González Toledo E (2009) Stroke and dementia. Neurol Res 31:824–831PubMedCrossRefGoogle Scholar
  20. 20.
    Schoenle EJ, Schoenle D, Molinari L, Largo RH (2002) Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia 45:108–114PubMedCrossRefGoogle Scholar
  21. 21.
    Dobbing J, Sands J (1971) Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of the brain growth-spurt. Biol Neonate 19:363–378PubMedCrossRefGoogle Scholar
  22. 22.
    Kramer L, Fasching P, Madl C, Schneider B, Damjancic P, Waldhäusl W, Irsigler K, Grimm G (1998) Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes 47:1909–1914PubMedCrossRefGoogle Scholar
  23. 23.
    The Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions, Complications (DCCT/EDIC) Study Research Group (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842–1852CrossRefGoogle Scholar
  24. 24.
    Sima AAF, Zhang W, Muzik O, Kreipke CW, Rafols JA, Hoffman WH (2009) Sequential abnormalities in type 1 diabetic encephalopathy and the effects of C-peptide. Rev Diabet Stud 6:211–222PubMedCrossRefGoogle Scholar
  25. 25.
    Brismar T, Hyllienmark L, Ekberg K, Johansson BL (2002) Loss of temporal lobe beta power in young adults with type 1 diabetes mellitus. Neuroreport 13:2469–2473PubMedCrossRefGoogle Scholar
  26. 26.
    Erkinjuntti T, Ganthier S (2009) The concept of vascular cognitive impairment. Front Neurol Neurosci 24:79–85PubMedCrossRefGoogle Scholar
  27. 27.
    Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R (2001) Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 154:635–641PubMedCrossRefGoogle Scholar
  28. 28.
    Peila R, Rodriguez BL, Launer LJ, Honolulu-Asia Aging Study (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies. Diabetes 51:1256–1262PubMedCrossRefGoogle Scholar
  29. 29.
    Peila R, Rodriguez BL, White LR, Launer LJ (2004) Fasting insulin and incident dementia in an elderly population of Japanese-American men. Neurology 63:228–233PubMedGoogle Scholar
  30. 30.
    Akomolafe A, Beiser A, Meigs JB, Au R, Green RC, Farrer LA, Wolf PA, Seshadri S (2006) Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol 63:1551–1555PubMedCrossRefGoogle Scholar
  31. 31.
    Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039PubMedCrossRefGoogle Scholar
  32. 32.
    Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62:1556–1560PubMedCrossRefGoogle Scholar
  33. 33.
    Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than 3 decades later. Neurology 71(14):1057–1064PubMedCrossRefGoogle Scholar
  34. 34.
    Spence JD (1996) Cerebral consequences of hypertension: where do they lead? J Hypertens Suppl 14:S139–S145PubMedGoogle Scholar
  35. 35.
    Etgen T, Sauder D, Bichel H, Sauder K, Förstl H (2010) Cognitive decline: the relevance of diabetes, hyperlipidaemia and hypertension. Br J Diab Vasc Dis 10:115. doi: 10.1177/1474651410368408 CrossRefGoogle Scholar
  36. 36.
    Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, Bossini A, Fagard R, Gil-Extremera B, Laks T, Kobalava Z, Sarti C, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Birkenhager WH, Systolic Hypertension in Europe Investigators (2002) The prevention of dementia with anti-hypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) Study. Arch Int Med 162:2046–2052CrossRefGoogle Scholar
  37. 37.
    Li N-C, Lee A, Whitmer RA, Kivipelto M, Lowler E, Kazis LE, Wolozin B (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: a prospective cohort analysis. BMJ 340:b5465. doi: 10:1136/baijb5465 PubMedCrossRefGoogle Scholar
  38. 38.
    Tezapsidis N, Johnston JM, Smith MA, Ashford JW, Casadesus G, Robakis NK, Wolozin B, Perry G, Zu X, Greco SJ, Sarkar S (2009) Leptin: a novel therapeutic strategy for Alzheimer’s disease. J Alzheimer Dis 16:731–740Google Scholar
  39. 39.
    Nourhashémi F, Deschamps V, Larrieu S, Letenneur L, Dartigues JF, Barberger-Gateau P, PAQU ID Study. Personnes Agées Quid (2003) Body mass index and incidence of dementia: the PAQUID study. Neurology 60:117–119PubMedCrossRefGoogle Scholar
  40. 40.
    Henderson VW, Guthrie JR, Dennerstein L (2003) Serum lipids and memory in a population based cohort of middle age women. J Neurol Neurosurg Psychiatry 74:1530–1535PubMedCrossRefGoogle Scholar
  41. 41.
    Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM (2002) Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 33:21–25PubMedCrossRefGoogle Scholar
  42. 42.
    de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14PubMedCrossRefGoogle Scholar
  43. 43.
    Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994PubMedCrossRefGoogle Scholar
  44. 44.
    Gouw AA, van der Flier WM, Fazekas F, van Straaten EC, Pantoni L, Poggesi A, Inzitari D, Erkinjuntti T, Wahlund LO, Waldemar G, Schmidt R, Scheltens P, Barkhof F, LADIS Study Group (2008) Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the Leukoaraiosis and Disability study. Stroke 39:1414–1420PubMedCrossRefGoogle Scholar
  45. 45.
    Jongen C, van der Grond J, Kappelle LJ, Biessels GJ, Viergever MA, Pluim JP, Utrecht Diabetic Encephalopathy Study Group (2007) Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabet Med 24:166–171CrossRefGoogle Scholar
  46. 46.
    van Harten B, Oosterman JM, Potter van Loon BJ, Scheltens P, Weinstein HC (2007) Brain lesions on MRI in elderly patients with type 2 diabetes mellitus. Eur Neurol 57:70–74PubMedCrossRefGoogle Scholar
  47. 47.
    den Heijer T, Vermeer SE, van Dijk EJ, Prins ND, Koudstaal PJ, Hofman A, Breteler MM (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604–1610CrossRefGoogle Scholar
  48. 48.
    Korf ES, White LR, Scheltens P, Launer LJ (2006) Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 29:2268–2274PubMedCrossRefGoogle Scholar
  49. 49.
    Korf ES, van Straaten EC, de Leeuw FE, van der Flier WM, Barkhof F, Pantoni L, Basile AM, Inzitari D, Erkinjuntti T, Wahlund LO, Rostrup E, Schmidt R, Fazekas F, Scheltens P, LADIS Study Group (2007) Diabetes mellitus, hypertension and medial temporal lobe atrophy: the LADIS study. Diabet Med 24:166–171PubMedCrossRefGoogle Scholar
  50. 50.
    Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ, Biessels GJ, Utrecht Diabetic Encephalopathy Study Group (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113PubMedCrossRefGoogle Scholar
  51. 51.
    Akisaki T, Sakurai T, Takata T, Umegaki H, Araki A, Mizuno S, Tanaka S, Ohashi Y, Iguchi A, Yokono K, Ito H (2006) Cognitive dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes mellitus Japanese elderly diabetes intervention trial (J-EDIT). Diabetes Metab Res Rev 22:376–384PubMedCrossRefGoogle Scholar
  52. 52.
    de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772PubMedCrossRefGoogle Scholar
  53. 53.
    Knopman DS, Mosley TH, Catellier DJ, Sharrett AR, Atherosclerosis Risk in Communities (ARIC) Study (2005) Cardiovascular risk factors and cerebral atrophy in a middle-aged cohort. Neurology 65:876–881PubMedCrossRefGoogle Scholar
  54. 54.
    Li Z-G, Zhang W, Sima AAF (2005) The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 1037:12–24PubMedCrossRefGoogle Scholar
  55. 55.
    de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabet Sci Tech 2:1101–1113Google Scholar
  56. 56.
    Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701PubMedGoogle Scholar
  57. 57.
    Tesfomariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87:1643–1648CrossRefGoogle Scholar
  58. 58.
    Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein-kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945PubMedCrossRefGoogle Scholar
  59. 59.
    Hoyer S (2004) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–152PubMedGoogle Scholar
  60. 60.
    Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125PubMedCrossRefGoogle Scholar
  61. 61.
    Li Z-G, Zhang W, Sima AAF (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56:1817–1824PubMedCrossRefGoogle Scholar
  62. 62.
    Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152PubMedCrossRefGoogle Scholar
  63. 63.
    Li Z-G, Qiang X, Sima AAF (2001) Grunberger G: C-peptide attenuates protein tyrosine phosphatase activity and enhances glycogen synthesis in L6 myoblasts. Biochem Biophys Res Com 26:615–619CrossRefGoogle Scholar
  64. 64.
    Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131:3311–3334PubMedCrossRefGoogle Scholar
  65. 65.
    Sima AAF, Kamiya H, Li Z-G (2004) Insulin, C-peptide hyperglycemia and central nervous system complications in diabetes. Eur J Pharmacol 490:187–197PubMedCrossRefGoogle Scholar
  66. 66.
    Pierson CR, Zhang W, Murakawa Y, Sima AAF (2002) Early gene responses of trophic factors differ in nerve regeneration in type 1 and type 2 diabetic neuropathy. J Neuropathol Exp Neurol 61:857–871PubMedGoogle Scholar
  67. 67.
    Xu G, Sima AAF (2001) Altered immediate early gene expression is impaired in diabetic nerve: implications in regeneration. J Neuropathol Exp Neurol 60(10):972–983PubMedGoogle Scholar
  68. 68.
    Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864PubMedCrossRefGoogle Scholar
  69. 69.
    Luppi P, Cifarelli V, Tse H, Piganelli J, Trucco M (2008) Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-kappaB pathway. Diabetologia 51:1534–1543PubMedCrossRefGoogle Scholar
  70. 70.
    Sima AAF, Zhang W, Kreipke CW, Rafols JA, Hoffman WH (2009) Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabet Stud 6:37–42PubMedCrossRefGoogle Scholar
  71. 71.
    Li Z-G, Zhang W, Sima AAF (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 19:375–385PubMedCrossRefGoogle Scholar
  72. 72.
    Hayden MS, Shosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar
  73. 73.
    Balakrishnan S, Mathew J, Paulose CS (2010) Cholinergic and glutamergic receptor functional regulation in long-term, low dose somatotropin and insulin treatment to ageing rats: rejuvenation of brain function. Mol Cell Endocrinol 314:23–30PubMedCrossRefGoogle Scholar
  74. 74.
    Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR, Sejnowski TJ, Tuszynski MH (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 35:10883–10889CrossRefGoogle Scholar
  75. 75.
    Brunton S (2009) Beyond glycemic control: treating the entire type 2 diabetes disorder. Postgrad Med. doi: 10.3810/pgm.2009.09.2054
  76. 76.
    Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, Tweedie D, Perry T, Mattson MP, Kapogiannis D, Sambamurti K, Lahiri DK, Greig NH (2010) GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219PubMedGoogle Scholar
  77. 77.
    Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305PubMedCrossRefGoogle Scholar
  78. 78.
    Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5:209–228PubMedGoogle Scholar
  79. 79.
    Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167PubMedCrossRefGoogle Scholar
  80. 80.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  81. 81.
    Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123PubMedCrossRefGoogle Scholar
  82. 82.
    Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–122PubMedCrossRefGoogle Scholar
  83. 83.
    Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, Younkin SG, Golde TE (2002) Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9:11–23PubMedCrossRefGoogle Scholar
  84. 84.
    Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100:11735–11740PubMedCrossRefGoogle Scholar
  85. 85.
    Sima AAF, Zhang W (2010) Caveolin 1 plays a central role in amyloidogenesis in type 2 diabetes (abstract). XXth Neurodiab, EASD StockholmGoogle Scholar
  86. 86.
    Selkoe DJ (2001) Alzheimer’s disease genes, proteins and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  87. 87.
    Papassotiropoulos A, Wollmer MA, Tsolaki M, Brunner F, Molyva D, Lütjohann D, Nitsch RM, Hock C (2005) A cluster of cholesterol-related genes confers susceptibility for Alzheimer’s disease. J Clin Psychiatry 66:940–947PubMedCrossRefGoogle Scholar
  88. 88.
    Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2002) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97:2892–2897CrossRefGoogle Scholar
  89. 89.
    Petanceska SS, Gandy S (1999) The phosphatidylinositol 3-kinase inhibitor wortmannin alters the metabolism of the Alzheimer’s amyloid precursor protein. J Neurochem 73:2316–2320PubMedCrossRefGoogle Scholar
  90. 90.
    Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K, Pappolla MA (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331PubMedCrossRefGoogle Scholar
  91. 91.
    Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464PubMedCrossRefGoogle Scholar
  92. 92.
    Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64:895–901PubMedCrossRefGoogle Scholar
  93. 93.
    de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150PubMedCrossRefGoogle Scholar
  94. 94.
    Sima AAF, Kamiya H (2008) Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curr Drug Targets 9:37–46PubMedCrossRefGoogle Scholar
  95. 95.
    Sima AAF, Li Z-G (2005) The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetes. Diabetes 54:1497–1505PubMedCrossRefGoogle Scholar
  96. 96.
    Uetsuki T, Takemoto K, Nishimura I, Okamoto M, Niinobe M, Momoi T, Miura M, Yoshikawa K (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 19:6955–6964PubMedGoogle Scholar
  97. 97.
    Matsui T, Ramasamy K, Ingelsson M, Fukumoto H, Conrad C, Frosch MP, Irizarry MC, Yuan J, Hyman BT (2006) Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable abeta42 levels. J Neuropathol Exp Neurol 65:508–516PubMedCrossRefGoogle Scholar
  98. 98.
    Anonymous Author (2010) Acetyl-l-carnitine monograph. Altern Med Rev 15:76–83Google Scholar
  99. 99.
    Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G (2005) Mechanisms of ischemic neuroprotection by acetyl-l-carnitine. Ann NY Acad Sci 1053:153–161PubMedCrossRefGoogle Scholar
  100. 100.
    Sima AAF (2009) Pathobiology of diabetic encephalopathy in animal models. In: Biessels GJ, Luchsinger JA (eds) Diabetes and the brain. Humana Press, Clifton, pp 409–431CrossRefGoogle Scholar
  101. 101.
    Kim B, Backus C, Oh SS, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150:5294–5301PubMedCrossRefGoogle Scholar
  102. 102.
    Ryan C, Vega A, Drash A (1985) Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 75:921–927PubMedGoogle Scholar
  103. 103.
    Northam EA, Anderson PJ, Jacobs R, Hughes M, Warne GL, Werther GA (2001) Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care 24:1541–1546PubMedCrossRefGoogle Scholar
  104. 104.
    Northam EA, Rankins D, Lin A, Wellard RM, Pell GS, Finch SJ, Werther GA, Cameron FJ (2009) Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care 32:445–450PubMedCrossRefGoogle Scholar
  105. 105.
    Ryan CM (2006) Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr Diabetes 7:289–297PubMedCrossRefGoogle Scholar
  106. 106.
    Fox MA, Chen RS, Holmes CS (2003) Gender differences in memory and learning in children with insulin-dependent diabetes mellitus (IDDM) over a 4-year follow-up interval. J Pediatr Psychol 28:569–578PubMedCrossRefGoogle Scholar
  107. 107.
    Austin EJ, Deary IJ (1999) Effects of repeated hypoglycemia on cognitive function: a psychometrically validated reanalysis of the diabetes control and complications trial data. Diabetes Care 22:1273–1277PubMedCrossRefGoogle Scholar
  108. 108.
    Ehehalt S, Blumenstock G, Willasch AM, Hub R, Ranke MB, Neu A, DIARY-Study Group Baden-Württemberg (2008) Continuous rise in incidence of childhood type 1 diabetes in Germany. Diabet Med 25:755–757PubMedCrossRefGoogle Scholar
  109. 109.
    Harjutsalo V, Sjöberg L, Tuomilehto J (2008) Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371:1777–1782PubMedCrossRefGoogle Scholar
  110. 110.
    Kumar P, Krishna P, Reddy SC, Gurappa M, Aravind SR, Munichoodappa C (2008) Incidence of type 1 diabetes mellitus and associated complications among children and young adults: results from Karnataka Diabetes Registry 1995–2008. J Ind Med Assoc 106:708–711Google Scholar
  111. 111.
    EURODIAB ACE Study Group (2000) Variation and trends in incidence of childhood diabetes in Europe. Lancet 355:873–876CrossRefGoogle Scholar
  112. 112.
    Ho MS, Weller NJ, Ives FJ, Carne CL, Murray K, Vanden Driesen RI, Nguyen TP, Robins PD, Bulsara M, Davis EA, Jones TW (2008) Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus. J Pediatr 153:385–390PubMedCrossRefGoogle Scholar
  113. 113.
    Musen G, Lyoo IK, Sparks CR, Weinger K, Hwang J, Ryan CM, Jimerson DC, Hennen J, Renshaw PF, Jacobson AM (2006) Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55:326–333PubMedCrossRefGoogle Scholar
  114. 114.
    Hoffman WH, Artlett CM, Zhang W, Kreipke CW, Passmore GG, Rafols JA, Sima AAF (2008) Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis. Brain Res 1238:154–162PubMedCrossRefGoogle Scholar
  115. 115.
    van Duinkerken E, Klein M, Schoonenboom NS, Hoogma RP, Moll AC, Snoek FJ, Stam CJ, Diamant M (2009) Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes 58:2335–2343PubMedCrossRefGoogle Scholar
  116. 116.
    Wilkins TJ (2001) The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 44:914–922CrossRefGoogle Scholar
  117. 117.
    Dabelea D (2009) The accelerating epidemic of childhood diabetes. Lancet 372:1999–2000CrossRefGoogle Scholar
  118. 118.
    Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301:2129–2140PubMedCrossRefGoogle Scholar
  119. 119.
    Salem MA, Matta LF, Tantawy AA, Hussein M, Gad GI (2002) Single photon emission tomography (SPECT) study of regional cerebral blood flow in normoalbuminuric children and adolescents with type 1 diabetes. 3:155–162Google Scholar
  120. 120.
    Perantie DC, Wu J, Koller JM, Lim A, Warren SL, Black KJ, Sadler M, White NH, Hershey T (2007) Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care 30:2331–2337PubMedCrossRefGoogle Scholar
  121. 121.
    Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, Diamond DM (2008) Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diab 9:531–539CrossRefGoogle Scholar
  122. 122.
    Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266PubMedCrossRefGoogle Scholar
  123. 123.
    Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800:125–135PubMedCrossRefGoogle Scholar
  124. 124.
    Sima AAF, Yagihashi S (1986) Central-peripheral distal axonopathy in the spontaneously diabetic BB- rat: Ultrastructural and morphometric findings. Diab Res Clin Pract 1:289–298CrossRefGoogle Scholar
  125. 125.
    Kamijo M, Cherian PV, Sima AAF (1993) The preventive effect of aldose reductase inhibition on diabetic optic neuropathy in the BB/W-rat. Diabetologia 36:893–898PubMedCrossRefGoogle Scholar
  126. 126.
    Biessels GJ (2007) Diabetic encephalopathy. In: Veves A, Malik RA (eds) Diabetic neuropathy—clinical management. Humana Press, Totowa, p 18Google Scholar
  127. 127.
    Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1:1–3CrossRefGoogle Scholar
  128. 128.
    Wiener SI, Paul CA, Eichenbaum H (1989) Spatial and behavioral correlates to hippocampal neuronal activity. J Neurosci 9:2737–2763PubMedGoogle Scholar
  129. 129.
    Blanchard JG, Duncan PM (1997) Effect of the combination of insulin, glucose and scopolamine on radial arm maze performance. Pharmacol Biochem Behav 58:209–214PubMedCrossRefGoogle Scholar
  130. 130.
    Grunberger G, Qiang X, Li Z-G, Mathews ST, Sbriessa D, Shisheva A, Sima AAF (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257PubMedCrossRefGoogle Scholar
  131. 131.
    Sima AAF, Wahren J (eds) (2009) The relevance of C-peptide in diabetes and its complications. Rev Diab Stud Special Issue 6:131–224Google Scholar
  132. 132.
    Toth C, Schmidt AM, Tuor UI, Francis G, Foniok T, Brussee V, Kaur J, Yan SF, Martinez JA, Barber PA, Buchan A, Zochodne DW (2006) Diabetes, leukoencephalopathy and RAGE. Neurobiol Dis 23:445–461PubMedCrossRefGoogle Scholar
  133. 133.
    Winick M, Noble A (1965) Quantitative changes in DNA, RNA and protein during prenatal and postnatal growth in the rat. Dev Biol 12:451–466PubMedCrossRefGoogle Scholar
  134. 134.
    Xu W, Qiu C, Winblad B, Fratiglioni L (2007) The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes 56:211–216PubMedCrossRefGoogle Scholar
  135. 135.
    Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PL, Palumbo PJ (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145:301–308PubMedGoogle Scholar
  136. 136.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes. Diabetes Care 27:1047–1053PubMedCrossRefGoogle Scholar
  137. 137.
    International Diabetes Federation (2000) Diabetes Atlas 2000. International Diabetes Federation, BrusselsGoogle Scholar
  138. 138.
    Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M, Alzheimer’s Disease International (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Departments of Pathology and NeurologyWayne State UniversityDetroitUSA

Personalised recommendations